
The code of the package nicematrix∗

F. Pantigny
fpantigny@wanadoo.fr

January 5, 2026

Abstract

This document is the documented code of the LaTeX package nicematrix. It is not its user’s
guide. The guide of utilisation is the document nicematrix.pdf (with a French translation:
nicematrix-french.pdf).

The development of the extension nicematrix is done on the following GitHub depot:
https://github.com/fpantigny/nicematrix

1 Declaration of the package and packages loaded

The prefix nicematrix has been registered for this package.
See: http://mirrors.ctan.org/macros/latex/contrib/l3kernel/l3prefixes.pdf
<@@=nicematrix>

First, we load pgfcore and the module shapes. We do so because it’s not possible to use \usepgfmodule
in \ExplSyntaxOn.

1 \RequirePackage{pgfcore}
2 \usepgfmodule{shapes}

We give the traditional declaration of a package written with the L3 programming layer.
3 \ProvidesExplPackage
4 {nicematrix}
5 {\myfiledate}
6 {\myfileversion}
7 {Enhanced arrays with the help of PGF/TikZ}

8 \msg_new:nnn { nicematrix } { latex-too-old }
9 {

10 Your~LaTeX~release~is~too~old. \\
11 You~need~at~least~the~version~of~2025-06-01. \\
12 If~you~use~Overleaf,~you~need~at~least~"TeXLive~2025".\\
13 The~package~'nicematrix'~won't~be~loaded.
14 }

15 \providecommand { \IfFormatAtLeastTF } { \@ifl@t@r \fmtversion }
16 \IfFormatAtLeastTF
17 { 2025-06-01 }
18 { }
19 { \msg_critical:nn { nicematrix } { latex-too-old } }

∗This document corresponds to the version 7.5a of nicematrix, at the date of 2026/01/05.

1

The command for the treatment of the options of \usepackage is at the end of this package for
technical reasons.

20 \RequirePackage { amsmath }

21 \RequirePackage{array}[=2025/06/08] % v2.6j

22 \cs_new_protected:Npn \@@_error:n { \msg_error:nn { nicematrix } }
23 \cs_new_protected:Npn \@@_warning:n { \msg_warning:nn { nicematrix } }
24 \cs_new_protected:Npn \@@_error:nn { \msg_error:nnn { nicematrix } }
25 \cs_generate_variant:Nn \@@_error:nn { n e }
26 \cs_new_protected:Npn \@@_error:nnn { \msg_error:nnnn { nicematrix } }
27 \cs_new_protected:Npn \@@_fatal:n { \msg_fatal:nn { nicematrix } }
28 \cs_new_protected:Npn \@@_fatal:nn { \msg_fatal:nnn { nicematrix } }
29 \cs_new_protected:Npn \@@_msg_new:nn { \msg_new:nnn { nicematrix } }

With Overleaf (and also in TeXPage), by default, a document is compiled in non-stop mode. When
there is an error, there is no way to the user to use the key H in order to have more information.
That’s why we decide to put that piece of information (for the messages with such information) in
the main part of the message when the key messages-for-Overleaf is used (at load-time).

30 \cs_new_protected:Npn \@@_msg_new:nnn #1 #2 #3
31 {
32 \bool_if:NTF \g_@@_messages_for_Overleaf_bool
33 { \msg_new:nnn { nicematrix } { #1 } { #2 \\ #3 } }
34 { \msg_new:nnnn { nicematrix } { #1 } { #2 } { #3 } }
35 }

We also create a command which will generate usually an error but only a warning on Overleaf. The
argument is given by curryfication.

36 \cs_new_protected:Npn \@@_error_or_warning:n
37 {
38 \bool_if:NTF \g_@@_messages_for_Overleaf_bool
39 { \@@_warning:n }
40 { \@@_error:n }
41 }

We try to detect whether the compilation is done on Overleaf. We use \c_sys_jobname_str because,
with Overleaf, the value of \c_sys_jobname_str is always “output”.

42 \bool_new:N \g_@@_messages_for_Overleaf_bool
43 \bool_gset:Nn \g_@@_messages_for_Overleaf_bool
44 {
45 \str_if_eq_p:on \c_sys_jobname_str { _region_ } % for Emacs
46 || \str_if_eq_p:ee \c_sys_jobname_str { output } % for Overleaf
47 }

48 \@@_msg_new:nn { mdwtab~loaded }
49 {
50 The~packages~'mdwtab'~and~'nicematrix'~are~incompatible.~
51 This~error~is~fatal.
52 }

53 \hook_gput_code:nnn { begindocument / end } { . }
54 { \IfPackageLoadedT { mdwtab } { \@@_fatal:n { mdwtab~loaded } } }

2

2 Collecting options

The following technique allows to create user commands with the ability to put an arbitrary number
of [list of (key=val)] after the name of the command.

Example :
\@@_collect_options:n { \F } [x=a,y=b] [z=c,t=d] { arg }
will be transformed in : \F{x=a,y=b,z=c,t=d}{arg}
Therefore, by writing : \def\G{\@@_collect_options:n{\F}},
the command \G takes in an arbitrary number of optional arguments between square brackets.
Be careful: that command is not “fully expandable” (because of \peek_meaning:NTF).

55 \cs_new_protected:Npn \@@_collect_options:n #1
56 {
57 \peek_meaning:NTF [
58 { \@@_collect_options:nw { #1 } }
59 { #1 { } }
60 }

We use \NewDocumentCommand in order to be able to allow nested brackets within the argument
between [and].

61 \NewDocumentCommand \@@_collect_options:nw { m r[] }
62 { \@@_collect_options:nn { #1 } { #2 } }
63

64 \cs_new_protected:Npn \@@_collect_options:nn #1 #2
65 {
66 \peek_meaning:NTF [
67 { \@@_collect_options:nnw { #1 } { #2 } }
68 { #1 { #2 } }
69 }
70

71 \cs_new_protected:Npn \@@_collect_options:nnw #1#2[#3]
72 { \@@_collect_options:nn { #1 } { #2 , #3 } }

3 Technical definitions

The following constants are defined only for efficiency in the tests.
73 \tl_const:Nn \c_@@_c_tl { c }
74 \tl_const:Nn \c_@@_l_tl { l }
75 \tl_const:Nn \c_@@_r_tl { r }
76 \tl_const:Nn \c_@@_all_tl { all }
77 \tl_const:Nn \c_@@_dot_tl { . }
78 \str_const:Nn \c_@@_r_str { r }
79 \str_const:Nn \c_@@_c_str { c }
80 \str_const:Nn \c_@@_l_str { l }

81 \tl_const:Nn \c_@@_brace_tl { nicematrix/brace }
82 \tl_const:Nn \c_@@_mirrored_brace_tl { nicematrix/mirrored-brace }

The following token list will be used for definitions of user commands (with \NewDocumentCommand)
with an embellishment using an underscore (there may be problems because of the catcode of the
underscore).

83 \tl_new:N \l_@@_argspec_tl

3

84 \cs_generate_variant:Nn \seq_set_split:Nnn { N o }
85 \cs_generate_variant:Nn \str_set:Nn { N o }
86 \cs_generate_variant:Nn \tl_build_put_right:Nn { N o }
87 \prg_generate_conditional_variant:Nnn \clist_if_in:Nn { N e } { T , F, TF }
88 \prg_generate_conditional_variant:Nnn \tl_if_empty:n { e } { T }
89 \prg_generate_conditional_variant:Nnn \tl_if_head_eq_meaning:nN { o N } { TF }
90 \cs_generate_variant:Nn \dim_min:nn { v }
91 \cs_generate_variant:Nn \dim_max:nn { v }

92 \hook_gput_code:nnn { begindocument } { . }
93 {
94 \IfPackageLoadedTF { tikz }
95 {

In some constructions, we will have to use a {pgfpicture} which must be replaced by a
{tikzpicture} if Tikz is loaded. However, this switch between {pgfpicture} and {tikzpicture}
can’t be done dynamically with a conditional because, when the Tikz library external is loaded by
the user, the pair \tikzpicture-\endtikpicture (or \begin{tikzpicture}-\end{tikzpicture})
must be statically “visible” (even when externalization is not activated).
That’s why we create \c_@@_pgfortikzpicture_tl and \c_@@_endpgfortikzpicture_tl which will
be used to construct in a \hook_gput_code:nnn { begindocument } { . } the correct version of
some commands. The tokens \exp_not:N are mandatory.

96 \tl_const:Nn \c_@@_pgfortikzpicture_tl { \exp_not:N \tikzpicture }
97 \tl_const:Nn \c_@@_endpgfortikzpicture_tl { \exp_not:N \endtikzpicture }
98 }
99 {

100 \tl_const:Nn \c_@@_pgfortikzpicture_tl { \exp_not:N \pgfpicture }
101 \tl_const:Nn \c_@@_endpgfortikzpicture_tl { \exp_not:N \endpgfpicture }
102 }
103 }

We test whether the current class is revtex4-1 (deprecated) or revtex4-2 because these classes redefines
\array (of array) in a way incompatible with our programmation. At the date April 2025, the current
version revtex4-2 is 4.2f (compatible with booktabs).

104 \IfClassLoadedTF { revtex4-1 }
105 { \bool_const:Nn \c_@@_revtex_bool { \c_true_bool } }
106 {
107 \IfClassLoadedTF { revtex4-2 }
108 { \bool_const:Nn \c_@@_revtex_bool { \c_true_bool } }
109 {

Maybe one of the previous classes will be loaded inside another class... We try to detect that situation.
110 \cs_if_exist:NT \rvtx@ifformat@geq
111 { \bool_const:Nn \c_@@_revtex_bool { \c_true_bool } }
112 { \bool_const:Nn \c_@@_revtex_bool { \c_false_bool } }
113 }
114 }

If the final user uses nicematrix, PGF/Tikz will write instruction \pgfsyspdfmark in the aux file.
If he changes its mind and no longer loads nicematrix, an error may occur at the next compilation
because of remanent instructions \pgfsyspdfmark in the aux file. With the following code, we try
to avoid that situation.

115 \cs_new_protected:Npn \@@_provide_pgfsyspdfmark:
116 {
117 \iow_now:Nn \@mainaux
118 {
119 \ExplSyntaxOn
120 \cs_if_free:NT \pgfsyspdfmark
121 { \cs_set_eq:NN \pgfsyspdfmark \@gobblethree }
122 \ExplSyntaxOff
123 }
124 \cs_gset_eq:NN \@@_provide_pgfsyspdfmark: \prg_do_nothing:
125 }

4

We define a command \iddots similar to \ddots (
. . .) but with dots going forward (. . .). We use

\ProvideDocumentCommand and so, if the command \iddots has already been defined (for example
by the package mathdots), we don’t define it again.

126 \ProvideDocumentCommand \iddots { }
127 {
128 \mathinner
129 {
130 \mkern 1 mu
131 \box_move_up:nn { 1 pt } { \hbox { . } }
132 \mkern 2 mu
133 \box_move_up:nn { 4 pt } { \hbox { . } }
134 \mkern 2 mu
135 \box_move_up:nn { 7 pt }
136 { \vbox:n { \kern 7 pt \hbox { . } } }
137 \mkern 1 mu
138 }
139 }

This definition is a variant of the standard definition of \ddots.

In the aux file, we will have the references of the PGF/Tikz nodes created by nicematrix. However,
when booktabs is used, some nodes (more precisely, some row nodes) will be defined twice because
their position will be modified. In order to avoid an error message in this case, we will redefine
\pgfutil@check@rerun in the aux file.

140 \hook_gput_code:nnn { begindocument } { . }
141 {
142 \IfPackageLoadedT { booktabs }
143 { \iow_now:Nn \@mainaux { \nicematrix@redefine@check@rerun } }
144 }
145 \cs_set_protected:Npn \nicematrix@redefine@check@rerun
146 {
147 \let \@@_old_pgfutil@check@rerun \pgfutil@check@rerun

The new version of \pgfutil@check@rerun will not check the PGF nodes whose names start with
nm- (which is the prefix for the nodes created by nicematrix).

148 \cs_set_protected:Npn \pgfutil@check@rerun ##1 ##2
149 {

\str_if_eq:ee(TF) is faster than \str_if_eq:nn(TF).
150 \str_if_eq:eeF { nm- } { \tl_range:nnn { ##1 } { 1 } { 3 } }
151 { \@@_old_pgfutil@check@rerun { ##1 } { ##2 } }
152 }
153 }

We have to know whether colortbl is loaded in particular for the redefinition of \everycr.
154 \hook_gput_code:nnn { begindocument } { . }
155 {
156 \cs_set_protected:Npe \@@_everycr:
157 {
158 \IfPackageLoadedTF { colortbl } { \CT@everycr } { \everycr }
159 { \noalign { \@@_in_everycr: } }
160 }
161 \IfPackageLoadedTF { colortbl }
162 {
163 \cs_set_eq:NN \@@_old_cellcolor: \cellcolor
164 \cs_set_eq:NN \@@_old_rowcolor: \rowcolor
165 \cs_new_protected:Npn \@@_revert_colortbl:
166 {
167 \hook_gput_code:nnn { env / tabular / begin } { nicematrix }
168 {
169 \cs_set_eq:NN \cellcolor \@@_old_cellcolor:
170 \cs_set_eq:NN \rowcolor \@@_old_rowcolor:

5

171 }
172 }

When colortbl is used, we have to catch the tokens \columncolor in the preamble because, otherwise,
colortbl will catch them and the colored panels won’t be drawn by nicematrix but by colortbl (with an
output which is not perfect).

173 \cs_new_protected:Npn \@@_replace_columncolor:
174 {
175 \tl_replace_all:Nnn \g_@@_array_preamble_tl
176 { \columncolor }
177 { \@@_columncolor_preamble }

\@@_column_preamble, despite its name, will be defined with \NewDocumentCommand because it takes
in an optional argument between square brackets in first position for the colorimetric space.

178 }
179 }
180 {
181 \cs_new_protected:Npn \@@_revert_colortbl: { }
182 \cs_new_protected:Npn \@@_replace_columncolor:
183 { \cs_set_eq:NN \columncolor \@@_columncolor_preamble }

The command \CT@arc@ is a command of colortbl which sets the color of the rules in the array. We
will use it to store the instruction of color for the rules even if colortbl is not loaded.

184 \def \CT@arc@ { }
185 \def \arrayrulecolor #1 # { \CT@arc { #1 } }
186 \def \CT@arc #1 #2
187 {
188 \dim_compare:nNnT { \baselineskip } = { \c_zero_dim } { \noalign }
189 { \cs_gset_nopar:Npn \CT@arc@ { \color #1 { #2 } } }
190 }

Idem for \CT@drs@.
191 \def \doublerulesepcolor #1 # { \CT@drs { #1 } }
192 \def \CT@drs #1 #2
193 {
194 \dim_compare:nNnT { \baselineskip } = { \c_zero_dim } { \noalign }
195 { \cs_gset:Npn \CT@drsc@ { \color #1 { #2 } } }
196 }
197 \def \hline
198 {
199 \noalign { \ifnum 0 = `} \fi
200 \cs_set_eq:NN \hskip \vskip
201 \cs_set_eq:NN \vrule \hrule
202 \cs_set_eq:NN \@width \@height
203 { \CT@arc@ \vline }
204 \futurelet \reserved@a
205 \@xhline
206 }
207 }
208 }

We have to redefine \cline for several reasons. The command \@@_cline: will be linked to \cline
in the beginning of {NiceArrayWithDelims}. The following commands must not be protected.

209 \cs_set_nopar:Npn \@@_standard_cline: #1 { \@@_standard_cline:w #1 \q_stop }
210 \cs_set_nopar:Npn \@@_standard_cline:w #1-#2 \q_stop
211 {
212 \int_if_zero:nT { \l_@@_first_col_int } { \omit & }
213 \int_compare:nNnT { #1 } > { \c_one_int }
214 { \multispan { \int_eval:n { #1 - 1 } } & }
215 \multispan { \int_eval:n { #2 - #1 + 1 } }
216 {
217 \CT@arc@
218 \leaders \hrule \@height \arrayrulewidth \hfill

6

The following \skip_horizontal:N \c_zero_dim is to prevent a potential \unskip to delete the
\leaders1

219 \skip_horizontal:N \c_zero_dim
220 }

Our \everycr has been modified. In particular, the creation of the row node is in the \everycr
(maybe we should put it with the incrementation of \c@iRow). Since the following \cr correspond
to a “false row”, we have to nullify \everycr.

221 \everycr { }
222 \cr
223 \noalign { \skip_vertical:n { - \arrayrulewidth } }
224 }

The following version of \cline spreads the array of a quantity equal to \arrayrulewidth as does
\hline. It will be loaded excepted if the key standard-cline has been used.

225 \cs_set:Npn \@@_cline:

We have to act in a fully expandable way since there may be \noalign (in the \multispan) to detect.
That’s why we use \@@_cline_i:en.

226 { \@@_cline_i:en { \l_@@_first_col_int } }

The command \cline_i:nn has two arguments. The first is the number of the current column (it
must be used in that column). The second is a standard argument of \cline of the form i-j or the
form i.

227 \cs_set:Npn \@@_cline_i:nn #1 #2 { \@@_cline_i:w #1|#2- \q_stop }
228 \cs_generate_variant:Nn \@@_cline_i:nn { e }
229 \cs_set:Npn \@@_cline_i:w #1|#2-#3 \q_stop
230 {
231 \tl_if_empty:nTF { #3 }
232 { \@@_cline_iii:w #1|#2-#2 \q_stop }
233 { \@@_cline_ii:w #1|#2-#3 \q_stop }
234 }
235 \cs_set:Npn \@@_cline_ii:w #1|#2-#3- \q_stop
236 { \@@_cline_iii:w #1|#2-#3 \q_stop }
237 \cs_set:Npn \@@_cline_iii:w #1|#2-#3 \q_stop
238 {

Now, #1 is the number of the current column and we have to draw a line from the column #2 to the
column #3 (both included).

239 \int_compare:nNnT { #1 } < { #2 }
240 { \multispan { \int_eval:n { #2 - #1 } } & }
241 \multispan { \int_eval:n { #3 - #2 + 1 } }
242 {
243 \CT@arc@
244 \leaders \hrule \@height \arrayrulewidth \hfill
245 \skip_horizontal:N \c_zero_dim
246 }

You look whether there is another \cline to draw (the final user may put several \cline).
247 \peek_meaning_remove_ignore_spaces:NTF \cline
248 { & \@@_cline_i:en { \int_eval:n { #3 + 1 } } }
249 { \everycr { } \cr }
250 }

The following command will be nullified in the environment {NiceTabular}, {NiceTabular*} and
{NiceTabularX}.

251 \cs_set:Nn \@@_math_toggle: { $ } % $

1See question 99041 on TeX StackExchange.

7

252 \cs_new_protected:Npn \@@_set_CTarc:n #1
253 {
254 \tl_if_blank:nF { #1 }
255 {
256 \tl_if_head_eq_meaning:nNTF { #1 } [
257 { \def \CT@arc@ { \color #1 } }
258 { \def \CT@arc@ { \color { #1 } } }
259 }
260 }
261 \cs_generate_variant:Nn \@@_set_CTarc:n { o }

262 \cs_new_protected:Npn \@@_set_CTdrsc:n #1
263 {
264 \tl_if_head_eq_meaning:nNTF { #1 } [
265 { \def \CT@drsc@ { \color #1 } }
266 { \def \CT@drsc@ { \color { #1 } } }
267 }

The following command must not be protected since it will be used to write instructions in the
\g_@@_pre_code_before_tl.

268 \cs_new:Npn \@@_exp_color_arg:Nn #1 #2
269 {
270 \tl_if_head_eq_meaning:nNTF { #2 } [
271 { #1 #2 }
272 { #1 { #2 } }
273 }
274 \cs_generate_variant:Nn \@@_exp_color_arg:Nn { N o }

The following command must be protected because of its use of the command \color.
275 \cs_new_protected:Npn \@@_color:n #1
276 { \tl_if_blank:nF { #1 } { \@@_exp_color_arg:Nn \color { #1 } } }
277 \cs_generate_variant:Nn \@@_color:n { o }

278 \cs_new_protected:Npn \@@_rescan_for_spanish:N #1
279 {
280 \tl_set_rescan:Nno
281 #1
282 {
283 \char_set_catcode_other:N >
284 \char_set_catcode_other:N <
285 }
286 #1
287 }

The L3 programming layer provides scratch dimensions \l_tmpa_dim and \l_tmpb_dim. We create
several more in the same spirit.

288 \dim_new:N \l_@@_tmpc_dim
289 \dim_new:N \l_@@_tmpd_dim

290 \tl_new:N \l_@@_tmpc_tl
291 \tl_new:N \l_@@_tmpd_tl

292 \int_new:N \l_@@_tmpc_int

8

4 Parameters

The following counter will count the environments {NiceArray}. The value of this counter will be
used to prefix the names of the Tikz nodes created in the array.

293 \int_new:N \g_@@_env_int

The following command is only a syntaxic shortcut. It must not be protected (it will be used in
names of pgf nodes).

294 \cs_new:Npn \@@_env: { nm - \int_use:N \g_@@_env_int }

The command \NiceMatrixLastEnv is not used by the package nicematrix. It’s only a facility given
to the final user. It gives the number of the last environment (in fact the number of the current
environment but it’s meant to be used after the environment in order to refer to that environment
— and its nodes — without having to give it a name). This command must be expandable since it
will be used in pgf nodes.

295 \NewExpandableDocumentCommand \NiceMatrixLastEnv { } { \int_use:N \g_@@_env_int }

The array will be composed in a box (named \l_@@_the_array_box) because we have to do manip-
ulations concerning the potential exterior rows.

296 \box_new:N \l_@@_the_array_box

The following command is only a syntaxic shortcut. The q in qpoint means quick.
297 \cs_new_protected:Npn \@@_qpoint:n #1
298 { \pgfpointanchor { \@@_env: - #1 } { center } }

If the user uses {NiceTabular}, {NiceTabular*} or {NiceTabularX}, we will raise the following
flag.

299 \bool_new:N \l_@@_tabular_bool

\g_@@_delims_bool will be true for the environments with delimiters (ex. : {pNiceMatrix},
{pNiceArray}, \pAutoNiceMatrix, etc.).

300 \bool_new:N \g_@@_delims_bool
301 \bool_gset_true:N \g_@@_delims_bool

In fact, if there is delimiters in the preamble of {NiceArray} (eg: [cccc]), this boolean will be set
to false.

The following boolean will be equal to true in the environments which have a preamble (provided
by the final user): {NiceTabular}, {NiceArray}, {pNiceArray}, etc.

302 \bool_new:N \l_@@_preamble_bool
303 \bool_set_true:N \l_@@_preamble_bool

We need a special treatment for {NiceMatrix} when vlines is not used, in order to retrieve
\arraycolsep on both sides.

304 \bool_new:N \l_@@_NiceMatrix_without_vlines_bool

The following counter will count the environments {NiceMatrixBlock}.
305 \int_new:N \g_@@_NiceMatrixBlock_int

It’s possible to put tabular notes (with \tabularnote) in the caption if that caption is composed
above the tabular. In such case, we will count in \g_@@_notes_caption_int the number of uses of
the command \tabularnote without optional argument in that caption.

306 \int_new:N \g_@@_notes_caption_int

9

The dimension \l_@@_columns_width_dim will be used when the options specify that all the columns
must have the same width (but, if the key columns-width is used with the special value auto, the
boolean \l_@@_auto_columns_width_bool also will be raised).

307 \dim_new:N \l_@@_columns_width_dim

The dimension \l_@@_col_width_dim will be available in each cell which belongs to a column of
fixed width: w{...}{...}, W{...}{...}, p{...}, m{...}, b{...} but also X (when the actual width
of that column is known, that is to say after the first compilation). It’s the width of that column. It
will be used by some commands \Block. A non positive value means that the column has no fixed
width (it’s a column of type c, r, l, etc.).

308 \dim_new:N \l_@@_col_width_dim
309 \dim_set:Nn \l_@@_col_width_dim { -1 cm }

The following counters will be used to count the numbers of rows and columns of the array.
310 \int_new:N \g_@@_row_total_int
311 \int_new:N \g_@@_col_total_int

The following parameter will be used by \@@_create_row_node: to avoid to create the same row-node
twice (at the end of the array).

312 \int_new:N \g_@@_last_row_node_int

The following counter corresponds to the key nb-rows of the command \RowStyle.
313 \int_new:N \l_@@_key_nb_rows_int

The following token list will contain the type of horizontal alignment of the current cell as provided by
the corresponding column. The possible values are r, l, c and j. For example, a column p[l]{3cm}
will provide the value l for all the cells of the column.

314 \tl_new:N \l_@@_hpos_cell_tl
315 \tl_set_eq:NN \l_@@_hpos_cell_tl \c_@@_c_tl

When there is a mono-column block (created by the command \Block), we want to take into account
the width of that block for the width of the column. That’s why we compute the width of that block
in the \g_@@_blocks_wd_dim and, after the construction of the box \l_@@_cell_box, we change the
width of that box to take into account the length \g_@@_blocks_wd_dim.

316 \dim_new:N \g_@@_blocks_wd_dim

Idem for the mono-row blocks.
317 \dim_new:N \g_@@_blocks_ht_dim
318 \dim_new:N \g_@@_blocks_dp_dim

The following dimension correspond to the key width (which may be fixed in \NiceMatrixOptions
but also in an environment {NiceTabular}).

319 \dim_new:N \l_@@_width_dim

The clist \g_@@_names_clist will be the list of all the names of environments used (via the option
name) in the document: two environments must not have the same name. However, it’s possible to
use the option allow-duplicate-names.

320 \clist_new:N \g_@@_names_clist

We want to know whether we are in an environment of nicematrix because we will raise an error if
the user tries to use nested environments.

321 \bool_new:N \l_@@_in_env_bool

The following key corresponds to the key notes/detect_duplicates.
322 \bool_new:N \l_@@_notes_detect_duplicates_bool
323 \bool_set_true:N \l_@@_notes_detect_duplicates_bool

10

324 \bool_new:N \l_@@_initial_open_bool
325 \bool_new:N \l_@@_final_open_bool
326 \bool_new:N \l_@@_Vbrace_bool

If the user uses {NiceTabular*}, the width of the tabular (in the first argument of the environment
{NiceTabular*}) will be stored in the following dimension.

327 \dim_new:N \l_@@_tabular_width_dim

The following dimension will be used for the total width of composite rules (total means that the
spaces on both sides are included).

328 \dim_new:N \l_@@_rule_width_dim

The key color in a command of rule such as \Hline (or the specifier “|” in the preamble of an
environment).

329 \tl_new:N \l_@@_rule_color_tl

The following boolean will be raised when the command \rotate is used.
330 \bool_new:N \g_@@_rotate_bool

The following boolean will be raise then the command \rotate is used with the key c.
331 \bool_new:N \g_@@_rotate_c_bool

In a cell, it will be possible to know whether we are in a cell of a column of type X thanks to that flag
(the X columns of nicematrix are inspired by those of tabularx). You will use that flag for the blocks.

332 \bool_new:N \l_@@_X_bool

\l_@@_V_of_X_bool during the construction of the preamble when a column of type X uses the key
V (whose name is inspired by the columns V of the extension varwidth).

333 \bool_new:N \l_@@_V_of_X_bool

The flag g_@@_V_of_X_bool will be raised when there is at least in the tabular a column of type X
using the key V.

334 \bool_new:N \g_@@_V_of_X_bool

335 \bool_new:N \g_@@_caption_finished_bool

The following boolean will be raised when the key no-cell-nodes is used.
336 \bool_new:N \l_@@_no_cell_nodes_bool

We will write in \g_@@_aux_tl all the instructions that we have to write on the aux file for the
current environment. The contain of that token list will be written on the aux file at the end of the
environment (in an instruction \tl_gset:cn { g_@@_ \int_use:N \g_@@_env_int _ tl }).

337 \tl_new:N \g_@@_aux_tl

During the second run, if information concerning the current environment has been found in the aux
file, the following flag will be raised. It will be used, for instance to disable several constructions
(continuous dotted lines, and colored backgrounds) during the first compilation (in order to speed up
it).

338 \bool_new:N \g_@@_aux_found_bool

In particuler, in that aux file, there will be, for each environment of nicematrix, an affectation for the
the following sequence that will contain information about the size of the array.

339 \seq_new:N \g_@@_size_seq

340 \tl_new:N \g_@@_left_delim_tl
341 \tl_new:N \g_@@_right_delim_tl

11

The token list \g_@@_user_preamble_tl will contain the preamble provided by the the final user of
nicematrix (eg the preamble of an environment {NiceTabular}).

342 \tl_new:N \g_@@_user_preamble_tl

The token list \g_@@_array_preamble_tl will contain the preamble constructed by nicematrix for
the environment {array} (of array).

343 \tl_new:N \g_@@_array_preamble_tl

For \multicolumn.
344 \tl_new:N \g_@@_preamble_tl

The following parameter corresponds to the key columns-type of the environments {NiceMatrix},
{pNiceMatrix}, etc. and also the key matrix / columns-type of \NiceMatrixOptions.

345 \tl_new:N \l_@@_columns_type_tl
346 \str_set:Nn \l_@@_columns_type_tl { c }

The following parameters correspond to the keys down, up and middle of a command such as \Cdots.
Usually, the final user doesn’t use that keys directly because he uses the syntax with the embellish-
ments _, ^ and :.

347 \tl_new:N \l_@@_xdots_down_tl
348 \tl_new:N \l_@@_xdots_up_tl
349 \tl_new:N \l_@@_xdots_middle_tl

We will store in the following sequence information provided by the instructions \rowlistcolors in
the main array (not in the \CodeBefore).

350 \seq_new:N \g_@@_rowlistcolors_seq

351 \cs_new_protected:Npn \@@_test_if_math_mode:
352 {
353 \if_mode_math: \else:
354 \@@_fatal:n { Outside~math~mode }
355 \fi:
356 }

The list of the columns where vertical lines in sub-matrices (vlism) must be drawn. Of course, the
actual value of this sequence will be known after the analysis of the preamble of the array.

357 \seq_new:N \g_@@_cols_vlism_seq

The following colors will be used to memorize the color of the potential “first col” and the potential
“first row”.

358 \colorlet { nicematrix-last-col } { . }
359 \colorlet { nicematrix-last-row } { . }

The following string is the name of the current environment or the current command of nicematrix
(despite its name which contains env).

360 \str_new:N \g_@@_name_env_str

The following string will contain the word command or environment whether we are in a command
of nicematrix or in an environment of nicematrix. The default value is environment.

361 \str_new:N \g_@@_com_or_env_str
362 \str_gset:Nn \g_@@_com_or_env_str { environment }

363 \bool_new:N \l_@@_bold_row_style_bool

12

The following command will be able to reconstruct the full name of the current command or envi-
ronment (despite its name which contains env). This command must not be protected since it will
be used in error messages and we have to use \str_if_eq:eeTF and not \tl_if_eq:eeTF because
we need to be fully expandable). \str_if_eq:ee(TF) is faster than \str_if_eq:nn(TF).

364 \cs_new:Npn \@@_full_name_env:
365 {
366 \str_if_eq:eeTF { \g_@@_com_or_env_str } { command }
367 { command \space \c_backslash_str \g_@@_name_env_str }
368 { environment \space \{ \g_@@_name_env_str \} }
369 }

370 \tl_new:N \g_@@_cell_after_hook_tl % 2025/03/22

For the key code of the command \SubMatrix (itself in the main \CodeAfter), we will use the
following token list.

371 \tl_new:N \l_@@_code_tl

For the key pgf-node-code. That code will be used when the nodes of the cells (that is to say the
nodes of the form i-j) will be created.

372 \tl_new:N \l_@@_pgf_node_code_tl

The so-called \CodeBefore is split in two parts because we want to control the order of execution of
some instructions.

373 \tl_new:N \g_@@_pre_code_before_tl
374 \tl_new:N \g_nicematrix_code_before_tl

The value of the key code-before will be added to the left of \g_@@_pre_code_before_tl. Idem
for the code between \CodeBefore and \Body.

The so-called \CodeAfter is split in two parts because we want to control the order of execution of
some instructions.

375 \tl_new:N \g_@@_pre_code_after_tl
376 \tl_new:N \g_nicematrix_code_after_tl

The \CodeAfter provided by the final user (with the key code-after or the keyword \CodeAfter)
will be stored in the second token list.

377 \bool_new:N \l_@@_in_code_after_bool

The following parameter will be raised when a block contains an ampersand (&) in its content (=label).
378 \bool_new:N \l_@@_ampersand_bool

The counters \l_@@_old_iRow_int and \l_@@_old_jCol_int will be used to save the values of the
potential LaTeX counters iRow and jCol. These LaTeX counters will be restored at the end of the
environment.

379 \int_new:N \l_@@_old_iRow_int
380 \int_new:N \l_@@_old_jCol_int

The TeX counters \c@iRow and \c@jCol will be created in the beginning of {NiceArrayWithDelims}
(if they don’t exist previously).

The following sequence will contain the names (without backslash) of the commands created by
custom-line by the key command or ccommand (commands used by the final user in order to draw
horizontal rules).

381 \seq_new:N \l_@@_custom_line_commands_seq

The following token list corresponds to the key rules/color available in the environments.
382 \tl_new:N \l_@@_rules_color_tl

13

The sum of the weights of all the X-columns in the preamble.
383 \fp_new:N \g_@@_total_X_weight_fp

If there is at least one X-column in the preamble of the array, the following flag will be raised via the
aux file. The length l_@@_x_columns_dim will be the width of X-columns of weight 1.0 (the width
of a column of weight x will be that dimension multiplied by x). That value is computed after the
construction of the array during the first compilation in order to be used in the following run.

384 \bool_new:N \l_@@_X_columns_aux_bool
385 \dim_new:N \l_@@_X_columns_dim

386 \dim_new:N \l_@@_brace_shift_dim

This boolean will be used only to detect in an expandable way whether we are at the beginning of
the (potential) column zero, in order to raise an error if \Hdotsfor is used in that column.

387 \bool_new:N \g_@@_after_col_zero_bool

A kind of false row will be inserted at the end of the array for the construction of the col nodes
(and also to fix the width of the columns when columns-width is used). When this special row will
be created, we will raise the flag \g_@@_row_of_col_done_bool in order to avoid some actions set
in the redefinition of \everycr when the last \cr of the \halign will occur (after that row of col
nodes).

388 \bool_new:N \g_@@_row_of_col_done_bool

It’s possible to use the command \NotEmpty to specify explicitly that a cell must be considered as
non empty by nicematrix (the Tikz nodes are constructed only in the non empty cells).

389 \bool_new:N \g_@@_not_empty_cell_bool

390 \tl_new:N \l_@@_code_before_tl
391 \bool_new:N \l_@@_code_before_bool

The following token list will contain the code inserted in each cell of the current row (this token list
will be cleared at the beginning of each row).

392 \tl_new:N \g_@@_row_style_tl

The following dimensions will be used when drawing the dotted lines.
393 \dim_new:N \l_@@_x_initial_dim
394 \dim_new:N \l_@@_y_initial_dim
395 \dim_new:N \l_@@_x_final_dim
396 \dim_new:N \l_@@_y_final_dim

397 \dim_new:N \g_@@_dp_row_zero_dim
398 \dim_new:N \g_@@_ht_row_zero_dim
399 \dim_new:N \g_@@_ht_row_one_dim
400 \dim_new:N \g_@@_dp_ante_last_row_dim
401 \dim_new:N \g_@@_ht_last_row_dim
402 \dim_new:N \g_@@_dp_last_row_dim

Some cells will be declared as “empty” (for example a cell with an instruction \Cdots).
403 \bool_new:N \g_@@_empty_cell_bool

The following dimensions will be used internally to compute the width of the potential “first column”
and “last column”.

404 \dim_new:N \g_@@_width_last_col_dim
405 \dim_new:N \g_@@_width_first_col_dim

14

The following sequence will contain the characteristics of the blocks of the array, specified by the
command \Block. Each block is represented by 6 components surrounded by curly braces:
{imin}{jmin}{imax}{jmax}{options}{contents}.
The variable is global because it will be modified in the cells of the array.

406 \seq_new:N \g_@@_blocks_seq

We also manage a sequence of the positions of the blocks. In that sequence, each block is represented
by only five components: {imin}{jmin}{imax}{jmax}{ name}. A block with the key hvlines won’t
appear in that sequence (otherwise, the lines in that block would not be drawn!).

407 \seq_new:N \g_@@_pos_of_blocks_seq

In fact, this sequence will also contain the positions of the cells with a \diagbox. The sequence
\g_@@_pos_of_blocks_seq will be used when we will draw the rules (which respect the blocks).

In the \CodeBefore, the value of \g_@@_pos_of_blocks_seq will be the value read in the aux file
from a previous run. However, in the \CodeBefore, the commands \EmptyColumn and \EmptyRow
will write virtual positions of blocks in the following sequence.

408 \seq_new:N \g_@@_future_pos_of_blocks_seq

They will be added to \g_@@_pos_of_blocks_seq after the computation of the “empty corners”.

We will also manage a sequence for the positions of the dotted lines. These dotted lines are created in
the array by \Cdots, \Vdots, \Ddots, etc. However, their positions, that is to say, their extremities,
will be determined only after the construction of the array. In this sequence, each item contains five
components: {imin}{jmin}{imax}{jmax}{ name}.

409 \seq_new:N \g_@@_pos_of_xdots_seq

The sequence \g_@@_pos_of_xdots_seq will be used when we will draw the rules required by the
key hvlines (these rules won’t be drawn within the virtual blocks corresponding to the dotted lines).

The final user may decide to “stroke” a block (using, for example, the key draw=red!15 when using
the command \Block). In that case, the rules specified, for instance, by hvlines must not be drawn
around the block. That’s why we keep the information of all that stroken blocks in the following
sequence.

410 \seq_new:N \g_@@_pos_of_stroken_blocks_seq

If the user has used the key corners, all the cells which are in an (empty) corner will be stored in
the following list. We use a clist instead of a seq because we will frequently search in that list (and
searching in a clist is faster than searching in a seq).

411 \clist_new:N \l_@@_corners_cells_clist

The list of the names of the potential \SubMatrix in the \CodeAfter of an environment. Unfor-
tunately, that list has to be global (we have to use it inside the group for the options of a given
\SubMatrix).

412 \seq_new:N \g_@@_submatrix_names_seq

The following flag will be raised if the key width is used in an environment {NiceTabular} (not in a
command \NiceMatrixOptions). You use it to raise an error when this key is used while no column
X is used.

413 \bool_new:N \l_@@_width_used_bool

The sequence \g_@@_multicolumn_cells_seq will contain the list of the cells of the array where a
command \multicolumn{n}{...}{...} with n > 1 is issued. In \g_@@_multicolumn_sizes_seq,
the “sizes” (that is to say the values of n) correspondent will be stored. These lists will be used for
the creation of the “medium nodes” (if they are created).

414 \seq_new:N \g_@@_multicolumn_cells_seq
415 \seq_new:N \g_@@_multicolumn_sizes_seq

15

By default, the diagonal lines will be parallelized2. There are two types of diagonals lines: the
\Ddots diagonals and the \Iddots diagonals. We have to count both types in order to know whether
a diagonal is the first of its type in the current {NiceArray} environment.

416 \int_new:N \g_@@_ddots_int
417 \int_new:N \g_@@_iddots_int

The dimensions \g_@@_delta_x_one_dim and \g_@@_delta_y_one_dim will contain the ∆x and ∆y

of the first \Ddots diagonal. We have to store these values in order to draw the others \Ddots
diagonals parallel to the first one. Similarly \g_@@_delta_x_two_dim and \g_@@_delta_y_two_dim
are the ∆x and ∆y of the first \Iddots diagonal.

418 \dim_new:N \g_@@_delta_x_one_dim
419 \dim_new:N \g_@@_delta_y_one_dim
420 \dim_new:N \g_@@_delta_x_two_dim
421 \dim_new:N \g_@@_delta_y_two_dim

The following counters will be used when searching the extremities of a dotted line (we need these
counters because of the potential “open” lines in the \SubMatrix—the \SubMatrix in the code-
before).

422 \int_new:N \l_@@_row_min_int
423 \int_new:N \l_@@_row_max_int
424 \int_new:N \l_@@_col_min_int
425 \int_new:N \l_@@_col_max_int

426 \int_new:N \l_@@_initial_i_int
427 \int_new:N \l_@@_initial_j_int
428 \int_new:N \l_@@_final_i_int
429 \int_new:N \l_@@_final_j_int

The following counters will be used when drawing the rules.
430 \int_new:N \l_@@_start_int
431 \int_set_eq:NN \l_@@_start_int \c_one_int
432 \int_new:N \l_@@_end_int
433 \int_new:N \l_@@_local_start_int
434 \int_new:N \l_@@_local_end_int

The following sequence will be used when the command \SubMatrix is used in the \CodeBefore
(and not in the \CodeAfter). It will contain the position of all the sub-matrices specified in the
\CodeBefore. Each sub-matrix is represented by an “object” of the form {i}{j}{k}{l} where i and
j are the number of row and column of the upper-left cell and k and l the number of row and column
of the lower-right cell.

435 \seq_new:N \g_@@_submatrix_seq

We are able to determine the number of columns specified in the preamble (for the environments with
explicit preamble of course and without the potential exterior columns).

436 \int_new:N \g_@@_static_num_of_col_int

The following parameters correspond to the keys fill, opacity, draw, tikz, borders, and rounded-
corners of the command \Block.

437 \tl_new:N \l_@@_fill_tl
438 \tl_new:N \l_@@_opacity_tl
439 \tl_new:N \l_@@_draw_tl
440 \seq_new:N \l_@@_tikz_seq
441 \clist_new:N \l_@@_borders_clist
442 \dim_new:N \l_@@_rounded_corners_dim

2It’s possible to use the option parallelize-diags to disable this parallelization.

16

The last parameter has no direct link with the [empty] corners of the array (which are computed and
taken into account by nicematrix when the key corners is used).

The following dimension corresponds to the key rounded-corners available in an individual envi-
ronment {NiceTabular}. When that key is used, a clipping is applied in the \CodeBefore of the
environment in order to have rounded corners for the potential colored panels.

443 \dim_new:N \l_@@_tab_rounded_corners_dim

The following token list correspond to the key color of the command \Block and also the key color
of the command \RowStyle.

444 \tl_new:N \l_@@_color_tl

In the key tikz of a command \Block or in the argument of a command \TikzEveryCell, the final
user puts a list of tikz keys. But, you have added another key, named offset (which means that an
offset will be used for the frame of the block or the cell). The following parameter corresponds to
that key.

445 \dim_new:N \l_@@_offset_dim

Here is the dimension for the width of the rule when a block (created by \Block) is stroked or when
the key hvlines is used.

446 \dim_new:N \l_@@_line_width_dim

The parameters of the horizontal position of the label of a block. If the user uses the key c or C, the
value is c. If the user uses the key l or L, the value is l. If the user uses the key r or R, the value is
r. If the user has used a capital letter, the boolean \l_@@_hpos_of_block_cap_bool will be raised
(in the second pass of the analyze of the keys of the command \Block).

447 \str_new:N \l_@@_hpos_block_str
448 \str_set:Nn \l_@@_hpos_block_str { c }
449 \bool_new:N \l_@@_hpos_of_block_cap_bool
450 \bool_new:N \l_@@_p_block_bool

If the final user has used the special color “nocolor”, the following flag will be raised.
451 \bool_new:N \l_@@_nocolor_used_bool

For the vertical position, the possible values are c, t, b, T and B (but \l_@@_vpos_block_str will
remain empty if the user doesn’t use a key for the vertical position).

452 \str_new:N \l_@@_vpos_block_str

Used when the key draw-first is used for \Ddots or \Iddots.
453 \bool_new:N \l_@@_draw_first_bool

The following flag corresponds to the keys vlines and hlines of the command \Block (the key
hvlines is the conjunction of both).

454 \bool_new:N \l_@@_vlines_block_bool
455 \bool_new:N \l_@@_hlines_block_bool

The blocks which use the key - will store their content in a box. These boxes are numbered with the
following counter.

456 \int_new:N \g_@@_block_box_int

457 \dim_new:N \l_@@_submatrix_extra_height_dim
458 \dim_new:N \l_@@_submatrix_left_xshift_dim
459 \dim_new:N \l_@@_submatrix_right_xshift_dim
460 \clist_new:N \l_@@_hlines_clist
461 \clist_new:N \l_@@_vlines_clist
462 \clist_new:N \l_@@_submatrix_hlines_clist
463 \clist_new:N \l_@@_submatrix_vlines_clist

The following key is set when the keys hvlines and hvlines-except-borders are used. It’s used
only to change slightly the clipping path set by the key rounded-corners (for a {tabular}).

464 \bool_new:N \l_@@_hvlines_bool

17

The following flag will be used by (for instance) \@@_vline_ii:. When \l_@@_dotted_bool is true,
a dotted line (with our system) will be drawn.

465 \bool_new:N \l_@@_dotted_bool

The following flag will be set to true during the composition of a caption specified (by the key
caption).

466 \bool_new:N \l_@@_in_caption_bool

Variables for the exterior rows and columns

The keys for the exterior rows and columns are first-row, first-col, last-row and last-col.
However, internally, these keys are not coded in a similar way.

• First row
The integer \l_@@_first_row_int is the number of the first row of the array. The default
value is 1, but, if the option first-row is used, the value will be 0.

467 \int_new:N \l_@@_first_row_int
468 \int_set_eq:NN \l_@@_first_row_int \c_one_int

• First column
The integer \l_@@_first_col_int is the number of the first column of the array. The default
value is 1, but, if the option first-col is used, the value will be 0.

469 \int_new:N \l_@@_first_col_int
470 \int_set_eq:NN \l_@@_first_col_int \c_one_int

• Last row
The counter \l_@@_last_row_int is the number of the potential “last row”, as specified by
the key last-row. A value of −2 means that there is no “last row”. A value of −1 means that
there is a “last row” but we don’t know the number of that row (the key last-row has been
used without value and the actual value has not still been read in the aux file).

471 \int_new:N \l_@@_last_row_int
472 \int_set:Nn \l_@@_last_row_int { -2 }

If, in an environment like {pNiceArray}, the option last-row is used without value, we will
globally raise the following flag. It will be used to know if we have, after the construction of
the array, to write in the aux file the number of the “last row”.3

473 \bool_new:N \l_@@_last_row_without_value_bool

Idem for \l_@@_last_col_without_value_bool

474 \bool_new:N \l_@@_last_col_without_value_bool

3We can’t use \l_@@_last_row_int for this usage because, if nicematrix has read its value from the aux file, the value
of the counter won’t be −1 any longer.

18

• Last column
For the potential “last column”, we use an integer. A value of −2 means that there is no
last column. A value of −1 means that we are in an environment without preamble (e.g.
{bNiceMatrix}) and there is a last column but we don’t know its value because the user has
used the option last-col without value. A value of 0 means that the option last-col has been
used in an environment with preamble (like {pNiceArray}): in this case, the key was necessary
without argument. The command \NiceMatrixOptions also sets \l_@@_last_col_int to 0.

475 \int_new:N \l_@@_last_col_int
476 \int_set:Nn \l_@@_last_col_int { -2 }

However, we have also a boolean. Consider the following code:

\begin{pNiceArray}{cc}[last-col]
1 & 2 \\
3 & 4
\end{pNiceArray}

In such a code, the “last column” specified by the key last-col is not used. We want to be
able to detect such a situation and we create a boolean for that job.

477 \bool_new:N \g_@@_last_col_found_bool

This boolean is set to false at the end of \@@_pre_array_after_CodeBefore:.

In the last column, we will raise the following flag (it will be used by \OnlyMainNiceMatrix).

478 \bool_new:N \l_@@_in_last_col_bool

Some utilities

479 \cs_new_protected:Npn \@@_cut_on_hyphen:w #1-#2 \q_stop
480 {

Here, we use \def instead of \tl_set:Nn for efficiency only.
481 \def \l_tmpa_tl { #1 }
482 \def \l_tmpb_tl { #2 }
483 }

The following takes as argument the name of a clist and which should be a list of intervals of
integers. It expands that list, that is to say, it replaces (by a sort of mapcan or flat_map) the interval
by the explicit list of the integers. The second argument is \c@iRow or \c@jCol.

484 \cs_new_protected:Npn \@@_expand_clist_hvlines:NN #1 #2
485 {
486 \clist_if_in:NnF #1 { all }
487 {
488 \clist_clear:N \l_tmpa_clist
489 \clist_map_inline:Nn #1
490 {
491 \tl_if_head_eq_meaning:nNTF { ##1 } -
492 {

If we have yet the number of columns or the number of columns (because they have been computed
during a previous run and written on the aux file), we can compute the actual position of the rule
with a negative position.

493 \int_if_zero:nF { #2 }
494 {
495 \clist_put_right:Ne \l_tmpa_clist
496 { \int_eval:n { #2 + (##1) + 1 } }
497 }
498 }
499 {

19

We recall than \tl_if_in:nnTF is slightly faster than \str_if_in:nnTF.
500 \tl_if_in:nnTF { ##1 } { - }
501 { \@@_cut_on_hyphen:w ##1 \q_stop }
502 {

Here, we use \def instead of \tl_set:Nn for efficiency only.
503 \def \l_tmpa_tl { ##1 }
504 \def \l_tmpb_tl { ##1 }
505 }
506 \int_step_inline:nnn { \l_tmpa_tl } { \l_tmpb_tl }
507 { \clist_put_right:Nn \l_tmpa_clist { ####1 } }
508 }
509 }
510 \tl_set_eq:NN #1 \l_tmpa_clist
511 }
512 }

The following internal parameters are for:

• \Ldots with both extremities open (and hence also \Hdotsfor in an exterior row;

• when the special character “:” is used in order to put the label of a so-called “dotted line” on
the line, a margin of \c_@@_innersep_middle_dim will be added around the label.

513 \hook_gput_code:nnn { begindocument } { . }
514 {
515 \dim_const:Nn \c_@@_shift_Ldots_last_row_dim { 0.5 em }
516 \dim_const:Nn \c_@@_innersep_middle_dim { 0.17 em }
517 }

5 The command \tabularnote

Of course, it’s possible to use \tabularnote in the main tabular. But there is also the possibility to
use that command in the caption of the tabular. And the caption may be specified by two means:

• The caption may of course be provided by the command \caption in a floating environment.
Of course, a command \tabularnote in that \caption makes sens only if the \caption is
before the {tabular}.

• It’s also possible to use \tabularnote in the value of the key caption of the {NiceTabular}
when the key caption-above is in force. However, in that case, one must remind that the
caption is composed after the composition of the box which contains the main tabular (that’s
mandatory since that caption must be wrapped with a line width equal to the width of the
tabular). However, we want the labels of the successive tabular notes in the logical order.
That’s why:

– The number of tabular notes present in the caption will be written on the aux file and
available in \g_@@_notes_caption_int.4

– During the composition of the main tabular, the tabular notes will be numbered from
\g_@@_notes_caption_int+1 and the notes will be stored in \g_@@_notes_seq. Each
component of \g_@@_notes_seq will be a kind of couple of the form : {label}{text
of the tabularnote}. The first component is the optional argument (between square
brackets) of the command \tabularnote (if the optional argument is not used, the value
will be the special marker expressed by \NoValue).

4More precisely, it’s the number of tabular notes which do not use the optional argument of \tabularnote.

20

– During the composition of the caption (value of \l_@@_caption_tl), the tabular notes will
be numbered from 1 to \g_@@_notes_caption_int and the notes themselves will be stored
in \g_@@_notes_in_caption_seq. The structure of the components of that sequence will
be the same as for \g_@@_notes_seq.

– After the composition of the main tabular and after the composition of the caption, the
sequences \g_@@_notes_in_caption_seq and \g_@@_notes_seq will be merged (in that
order) and the notes will be composed.

The LaTeX counter tabularnote will be used to count the tabular notes during the construction of
the array (this counter won’t be used during the composition of the notes at the end of the array).
You use a LaTeX counter because we will use \refstepcounter in order to have the tabular notes
referenceable.

518 \newcounter { tabularnote }

We want to avoid error messages for duplicate labels when the package hyperref is used. That’s why
we will count all the tabular notes of the whole document with \g_@@_tabularnote_int.

519 \int_new:N \g_@@_tabularnote_int
520 \cs_set:Npn \theHtabularnote { \int_use:N \g_@@_tabularnote_int }

521 \seq_new:N \g_@@_notes_seq
522 \seq_new:N \g_@@_notes_in_caption_seq

Before the actual tabular notes, it’s possible to put a text specified by the key tabularnote of the
environment. The token list \g_@@_tabularnote_tl corresponds to the value of that key.

523 \tl_new:N \g_@@_tabularnote_tl

We prepare the tools for the formatting of the references of the footnotes (in the tabular itself). There
may have several references of footnote at the same point and we have to take into account that point.

524 \seq_new:N \l_@@_notes_labels_seq
525 \newcounter { nicematrix_draft }
526 \cs_new_protected:Npn \@@_notes_format:n #1
527 {
528 \setcounter { nicematrix_draft } { #1 }
529 \@@_notes_style:n { nicematrix_draft }
530 }

The following function can be redefined by using the key notes/style.
531 \cs_new:Npn \@@_notes_style:n #1 { \textit { \alph { #1 } } }

The following function can be redefined by using the key notes/label-in-tabular.
532 \cs_new:Npn \@@_notes_label_in_tabular:n #1 { \textsuperscript { #1 } }

The following function can be redefined by using the key notes/label-in-list.
533 \cs_new:Npn \@@_notes_label_in_list:n #1 { \textsuperscript { #1 } }

We define \thetabularnote because it will be used by LaTeX if the user want to reference a tabular
which has been marked by a \label. The TeX group is for the case where the user has put an
instruction such as \color{red} in \@@_notes_style:n.

534 \cs_set:Npn \thetabularnote { { \@@_notes_style:n { tabularnote } } }

The tabular notes will be available for the final user only when enumitem is loaded. Indeed, the
tabular notes will be composed at the end of the array with a list customized by enumitem (a list
tabularnotes in the general case and a list tabularnotes* if the key para is in force). However,
we can test whether enumitem has been loaded only at the beginning of the document (we want to
allow the user to load enumitem after nicematrix).

535 \hook_gput_code:nnn { begindocument } { . }
536 {
537 \IfPackageLoadedTF { enumitem }
538 {

21

The type of list tabularnotes will be used to format the tabular notes at the end of the array in the
general case and tabularnotes* will be used if the key para is in force.

539 \newlist { tabularnotes } { enumerate } { 1 }
540 \setlist [tabularnotes]
541 {
542 topsep = \c_zero_dim ,
543 noitemsep ,
544 leftmargin = * ,
545 align = left ,
546 labelsep = \c_zero_dim ,
547 label =
548 \@@_notes_label_in_list:n { \@@_notes_style:n { tabularnotesi } } ,
549 }
550 \newlist { tabularnotes* } { enumerate* } { 1 }
551 \setlist [tabularnotes*]
552 {
553 afterlabel = \nobreak ,
554 itemjoin = \quad ,
555 label =
556 \@@_notes_label_in_list:n { \@@_notes_style:n { tabularnotes*i } }
557 }

One must remind that we have allowed a \tabular in the caption and that caption may also be found
in the list of tables (\listoftables). We want the command \tabularnote be no-op during the
composition of that list. That’s why we program \tabularnote to be no-op excepted in a floating
environment or in an environment of nicematrix.

558 \NewDocumentCommand \tabularnote { o m }
559 {
560 \bool_lazy_or:nnT { \cs_if_exist_p:N \@captype } { \l_@@_in_env_bool }
561 {
562 \bool_lazy_and:nnTF { ! \l_@@_tabular_bool } { \l_@@_in_env_bool }
563 { \@@_error:n { tabularnote~forbidden } }
564 {
565 \bool_if:NTF \l_@@_in_caption_bool
566 \@@_tabularnote_caption:nn
567 \@@_tabularnote:nn
568 { #1 } { #2 }
569 }
570 }
571 }
572 }
573 {
574 \NewDocumentCommand \tabularnote { o m }
575 { \@@_err_enumitem_not_loaded: }
576 }
577 }

578 \cs_new_protected:Npn \@@_err_enumitem_not_loaded:
579 {
580 \@@_error_or_warning:n { enumitem~not~loaded }
581 \cs_gset:Npn \@@_err_enumitem_not_loaded: { }
582 }

583 \cs_new_protected:Npn \@@_test_first_novalue:nnn #1 #2 #3
584 { \tl_if_novalue:nT { #1 } { #3 } }

For the version in normal conditions, that is to say not in the caption. #1 is the optional argument of
\tabularnote (maybe equal to the special marker expressed by \NoValue) and #2 is the mandatory
argument of \tabularnote.

585 \cs_new_protected:Npn \@@_tabularnote:nn #1 #2
586 {

22

You have to see whether the argument of \tabularnote has yet been used as argument of another
\tabularnote in the same tabular. In that case, there will be only one note (for both commands
\tabularnote) at the end of the tabular. We search the argument of our command \tabularnote
in \g_@@_notes_seq. The position in the sequence will be stored in \l_tmpa_int (0 if the text is
not in the sequence yet).

587 \int_zero:N \l_tmpa_int
588 \bool_if:NT \l_@@_notes_detect_duplicates_bool
589 {

We recall that each component of \g_@@_notes_seq is a kind of couple of the form

{label}{text of the tabularnote}.

If the user have used \tabularnote without the optional argument, the label will be the special
marker expressed by \NoValue.
When we will go through the sequence \g_@@_notes_seq, we will count in \l_tmpb_int the notes
without explicit label in order to have the “current” value of the counter \c@tabularnote.

590 \int_zero:N \l_tmpb_int
591 \seq_map_indexed_inline:Nn \g_@@_notes_seq
592 {
593 \@@_test_first_novalue:nnn ##2 { \int_incr:N \l_tmpb_int }
594 \tl_if_eq:nnT { { #1 } { #2 } } { ##2 }
595 {
596 \tl_if_novalue:nTF { #1 }
597 { \int_set_eq:NN \l_tmpa_int \l_tmpb_int }
598 { \int_set:Nn \l_tmpa_int { ##1 } }
599 \seq_map_break:
600 }
601 }
602 \int_if_zero:nF { \l_tmpa_int }
603 { \int_add:Nn \l_tmpa_int { \g_@@_notes_caption_int } }
604 }
605 \int_if_zero:nT { \l_tmpa_int }
606 {
607 \seq_gput_right:Nn \g_@@_notes_seq { { #1 } { #2 } }
608 \tl_if_novalue:nT { #1 } { \int_gincr:N \c@tabularnote }
609 }
610 \seq_put_right:Ne \l_@@_notes_labels_seq
611 {
612 \tl_if_novalue:nTF { #1 }
613 {
614 \@@_notes_format:n
615 {
616 \int_eval:n
617 {
618 \int_if_zero:nTF { \l_tmpa_int }
619 { \c@tabularnote }
620 { \l_tmpa_int }
621 }
622 }
623 }
624 { #1 }
625 }
626 \peek_meaning:NF \tabularnote
627 {

If the following token is not a \tabularnote, we have finished the sequence of successive commands
\tabularnote and we have to format the labels of these tabular notes (in the array). We compose
those labels in a box \l_tmpa_box because we will do a special construction in order to have this box
in an overlapping position if we are at the end of a cell when \l_@@_hpos_cell_tl is equal to c or r.

628 \hbox_set:Nn \l_tmpa_box
629 {

23

We remind that it is the command \@@_notes_label_in_tabular:n that will put the labels in a
\textsuperscript.

630 \@@_notes_label_in_tabular:n
631 { \seq_use:Nn \l_@@_notes_labels_seq { , } }
632 }

We want the (last) tabular note referenceable (with the standard command \label).
633 \int_gdecr:N \c@tabularnote
634 \int_set_eq:NN \l_tmpa_int \c@tabularnote

The following line is only to avoid error messages for multipy defined labels when the package hyperref
is used.

635 \int_gincr:N \g_@@_tabularnote_int
636 \refstepcounter { tabularnote }
637 \int_compare:nNnT { \l_tmpa_int } = { \c@tabularnote }
638 { \int_gincr:N \c@tabularnote }
639 \seq_clear:N \l_@@_notes_labels_seq
640 \bool_lazy_or:nnTF
641 { \str_if_eq_p:ee \l_@@_hpos_cell_tl { c } }
642 { \str_if_eq_p:ee \l_@@_hpos_cell_tl { r } }
643 {
644 \hbox_overlap_right:n { \box_use:N \l_tmpa_box }

If the command \tabularnote is used exactly at the end of the cell, the \unskip (inserted by array?)
will delete the skip we insert now and the label of the footnote will be composed in an overlapping
position (by design).

645 \skip_horizontal:n { \box_wd:N \l_tmpa_box }
646 }
647 { \box_use:N \l_tmpa_box }
648 }
649 }

Now the version when the command is used in the key caption. The main difficulty is that the
argument of the command \caption is composed several times. In order to know the number of
commands \tabularnote in the caption, we will consider that there should not be the same tabular
note twice in the caption (in the main tabular, it’s possible). Once we have found a tabular note
which has yet been encountered, we consider that you are in a new composition of the argument of
\caption.

650 \cs_new_protected:Npn \@@_tabularnote_caption:nn #1 #2
651 {
652 \bool_if:NTF \g_@@_caption_finished_bool
653 {
654 \int_compare:nNnT { \c@tabularnote } = { \g_@@_notes_caption_int }
655 { \int_gzero:N \c@tabularnote }

Now, we try to detect duplicate notes in the caption. Be careful! We must put \tl_if_in:NnF and
not \tl_if_in:NnT!

656 \seq_if_in:NnF \g_@@_notes_in_caption_seq { { #1 } { #2 } }
657 { \@@_error:n { Identical~notes~in~caption } }
658 }
659 {

In the following code, we are in the first composition of the caption or at the first \tabularnote of
the second composition.

660 \seq_if_in:NnTF \g_@@_notes_in_caption_seq { { #1 } { #2 } }
661 {

Now, we know that are in the second composition of the caption since we are reading a tabular note
which has yet been read. Now, the value of \g_@@_notes_caption_int won’t change anymore: it’s
the number of uses without optional argument of the command \tabularnote in the caption.

662 \bool_gset_true:N \g_@@_caption_finished_bool
663 \int_gset_eq:NN \g_@@_notes_caption_int \c@tabularnote
664 \int_gzero:N \c@tabularnote
665 }

24

666 { \seq_gput_right:Nn \g_@@_notes_in_caption_seq { { #1 } { #2 } } }
667 }

Now, we will compose the label of the footnote (in the caption). Even if we are not in the first
composition, we have to compose that label!

668 \tl_if_novalue:nT { #1 } { \int_gincr:N \c@tabularnote }
669 \seq_put_right:Ne \l_@@_notes_labels_seq
670 {
671 \tl_if_novalue:nTF { #1 }
672 { \@@_notes_format:n { \int_use:N \c@tabularnote } }
673 { #1 }
674 }
675 \peek_meaning:NF \tabularnote
676 {
677 \@@_notes_label_in_tabular:n { \seq_use:Nn \l_@@_notes_labels_seq { , } }
678 \seq_clear:N \l_@@_notes_labels_seq
679 }
680 }

681 \cs_new_protected:Npn \@@_count_novalue_first:nn #1 #2
682 { \tl_if_novalue:nT { #1 } { \int_gincr:N \g_@@_notes_caption_int } }

6 Command for creation of rectangle nodes

The following command should be used in a {pgfpicture}. It creates a rectangle (empty but with
a name).
#1 is the name of the node which will be created; #2 and #3 are the coordinates of one of the corner
of the rectangle; #4 and #5 are the coordinates of the opposite corner.

683 \cs_new_protected:Npn \@@_pgf_rect_node:nnnnn #1 #2 #3 #4 #5
684 {
685 \begin { pgfscope }
686 \pgfset
687 {
688 inner~sep = \c_zero_dim ,
689 minimum~size = \c_zero_dim
690 }
691 \pgftransformshift { \pgfpoint { 0.5 * (#2 + #4) } { 0.5 * (#3 + #5) } }
692 \pgfnode
693 { rectangle }
694 { center }
695 {
696 \vbox_to_ht:nn
697 { \dim_abs:n { #5 - #3 } }
698 {
699 \vfill
700 \hbox_to_wd:nn { \dim_abs:n { #4 - #2 } } { }
701 }
702 }
703 { #1 }
704 { }
705 \end { pgfscope }
706 }

The command \@@_pgf_rect_node:nnn is a variant of \@@_pgf_rect_node:nnnnn: it takes two pgf
points as arguments instead of the four dimensions which are the coordinates.

707 \cs_new_protected:Npn \@@_pgf_rect_node:nnn #1 #2 #3
708 {
709 \begin { pgfscope }
710 \pgfset
711 {
712 inner~sep = \c_zero_dim ,

25

713 minimum~size = \c_zero_dim
714 }
715 \pgftransformshift { \pgfpointscale { 0.5 } { \pgfpointadd { #2 } { #3 } } }
716 \pgfpointdiff { #3 } { #2 }
717 \pgfgetlastxy \l_tmpa_dim \l_tmpb_dim
718 \pgfnode
719 { rectangle }
720 { center }
721 {
722 \vbox_to_ht:nn
723 { \dim_abs:n \l_tmpb_dim }
724 { \vfill \hbox_to_wd:nn { \dim_abs:n \l_tmpa_dim } { } }
725 }
726 { #1 }
727 { }
728 \end { pgfscope }
729 }

7 The options

The following parameter corresponds to the keys caption, short-caption and label of the envi-
ronment {NiceTabular}.

730 \tl_new:N \l_@@_caption_tl
731 \tl_new:N \l_@@_short_caption_tl
732 \tl_new:N \l_@@_label_tl

The following parameter corresponds to the key caption-above of \NiceMatrixOptions. When this
paremeter is true, the captions of the environments {NiceTabular}, specified with the key caption
are put above the tabular (and below elsewhere).

733 \bool_new:N \l_@@_caption_above_bool

By default, the behaviour of \cline is changed in the environments of nicematrix: a \cline spreads
the array by an amount equal to \arrayrulewidth. It’s possible to disable this feature with the key
\l_@@_standard_line_bool.

734 \bool_new:N \l_@@_standard_cline_bool

The following dimensions correspond to the options cell-space-top-limit and co (these parameters
are inspired by the package cellspace).

735 \dim_new:N \l_@@_cell_space_top_limit_dim
736 \dim_new:N \l_@@_cell_space_bottom_limit_dim

The following parameter corresponds to the key xdots/horizontal_labels.
737 \bool_new:N \l_@@_xdots_h_labels_bool

The following dimension is the distance between two dots for the dotted lines (when line-style is
equal to standard, which is the initial value). The initial value is 0.45 em but it will be changed if
the option small is used.

738 \dim_new:N \l_@@_xdots_inter_dim
739 \hook_gput_code:nnn { begindocument } { . }
740 { \dim_set:Nn \l_@@_xdots_inter_dim { 0.45 em } }

26

The unit is em and that’s why we fix the dimension after the preamble.

The following dimension is the distance between a node (in fact an anchor of that node) and a dotted
line (for real dotted lines, the actual distance may, of course, be a bit larger, depending of the exact
position of the dots).

741 \dim_new:N \l_@@_xdots_shorten_start_dim
742 \dim_new:N \l_@@_xdots_shorten_end_dim
743 \hook_gput_code:nnn { begindocument } { . }
744 {
745 \dim_set:Nn \l_@@_xdots_shorten_start_dim { 0.3 em }
746 \dim_set:Nn \l_@@_xdots_shorten_end_dim { 0.3 em }
747 }

The unit is em and that’s why we fix the dimension after the preamble.

The following dimension is the radius of the dots for the dotted lines (when line-style is equal to
standard, which is the initial value). The initial value is 0.53 pt but it will be changed if the option
small is used.

748 \dim_new:N \l_@@_xdots_radius_dim
749 \hook_gput_code:nnn { begindocument } { . }
750 { \dim_set:Nn \l_@@_xdots_radius_dim { 0.53 pt } }

The unit is em and that’s why we fix the dimension after the preamble.

The token list \l_@@_xdots_line_style_tl corresponds to the option tikz of the commands \Cdots,
\Ldots, etc. and of the options line-style for the environments and \NiceMatrixOptions. The
constant \c_@@_standard_tl will be used in some tests.

751 \tl_new:N \l_@@_xdots_line_style_tl
752 \tl_const:Nn \c_@@_standard_tl { standard }
753 \tl_set_eq:NN \l_@@_xdots_line_style_tl \c_@@_standard_tl

The boolean \l_@@_light_syntax_bool corresponds to the option light-syntax and the boolean
\l_@@_light_syntax_expanded_bool correspond to the the option light-syntax-expanded.

754 \bool_new:N \l_@@_light_syntax_bool
755 \bool_new:N \l_@@_light_syntax_expanded_bool

The string \l_@@_baseline_tl may contain one of the three values t, c or b as in the option of the
environment {array}. However, it may also contain an integer (which represents the number of the
row to which align the array).

756 \tl_new:N \l_@@_baseline_tl
757 \tl_set:Nn \l_@@_baseline_tl { c }

The following parameter corresponds to the key ampersand-in-blocks
758 \bool_new:N \l_@@_amp_in_blocks_bool

The flag \l_@@_exterior_arraycolsep_bool corresponds to the option exterior-arraycolsep.
If this option is set, a space equal to \arraycolsep will be put on both sides of an environment
{NiceArray} (as it is done in {array} of array).

759 \bool_new:N \l_@@_exterior_arraycolsep_bool

The flag \l_@@_parallelize_diags_bool controls whether the diagonals are parallelized. The initial
value is true.

760 \bool_new:N \l_@@_parallelize_diags_bool
761 \bool_set_true:N \l_@@_parallelize_diags_bool

The following parameter correspond to the key corners. The elements of that clist must be within
NW, SW, NE and SE.

762 \clist_new:N \l_@@_corners_clist

27

The flag \l_@@_nullify_dots_bool corresponds to the option nullify-dots. When the flag is
down, the instructions like \vdots are inserted within a \hphantom (and so the constructed matrix
has exactly the same size as a matrix constructed with the classical {matrix} and \ldots, \vdots,
etc.).

763 \bool_new:N \l_@@_nullify_dots_bool

When the key respect-arraystretch is used, the following command will be nullified.
764 \cs_new_protected:Npn \@@_reset_arraystretch: { \def \arraystretch { 1 } }

The following flag will be used when the current options specify that all the columns of the array
must have the same width equal to the largest width of a cell of the array (except the cells of the
potential exterior columns).

765 \bool_new:N \l_@@_auto_columns_width_bool

The following boolean corresponds to the key create-cell-nodes of the keyword \CodeBefore.
When that key is used the “cell nodes” will be created before the \CodeBefore but, of course, they
are always available in the main tabular and after!

766 \bool_new:N \g_@@_create_cell_nodes_bool

The string \l_@@_name_str will contain the optional name of the environment: this name can be
used to access to the Tikz nodes created in the array from outside the environment.

767 \str_new:N \l_@@_name_str

The boolean \l_@@_medium_nodes_bool will be used to indicate whether the “medium nodes” are
created in the array. Idem for the “large nodes”.

768 \bool_new:N \l_@@_medium_nodes_bool
769 \bool_new:N \l_@@_large_nodes_bool

The boolean \l_@@_except_borders_bool will be raised when the key hvlines-except-borders
will be used (but that key has also other effects).

770 \bool_new:N \l_@@_except_borders_bool

The dimension \l_@@_left_margin_dim correspond to the option left-margin. Idem for the right
margin. These parameters are involved in the creation of the “medium nodes” but also in the
placement of the delimiters and the drawing of the horizontal dotted lines (\hdottedline).

771 \dim_new:N \l_@@_left_margin_dim
772 \dim_new:N \l_@@_right_margin_dim

The dimensions \l_@@_extra_left_margin_dim and \l_@@_extra_right_margin_dim correspond
to the options extra-left-margin and extra-right-margin.

773 \dim_new:N \l_@@_extra_left_margin_dim
774 \dim_new:N \l_@@_extra_right_margin_dim

The token list \l_@@_end_of_row_tl corresponds to the option end-of-row. It specifies the symbol
used to mark the ends of rows when the light syntax is used.

775 \tl_new:N \l_@@_end_of_row_tl
776 \tl_set:Nn \l_@@_end_of_row_tl { ; }

The following parameter is for the color the dotted lines drawn by \Cdots, \Ldots, \Vdots, \Ddots,
\Iddots and \Hdotsfor but not the dotted lines drawn by \hdottedline and “:”.

777 \tl_new:N \l_@@_xdots_color_tl

The following token list corresponds to the key delimiters/color.
778 \tl_new:N \l_@@_delimiters_color_tl

28

Sometimes, we want to have several arrays vertically juxtaposed in order to have an alignment of the
columns of these arrays. To acheive this goal, one may wish to use the same width for all the columns
(for example with the option columns-width or the option auto-columns-width of the environment
{NiceMatrixBlock}). However, even if we use the same type of delimiters, the width of the delimiters
may be different from an array to another because the width of the delimiter is fonction of its size.
That’s why we create an option called delimiters/max-width which will give to the delimiters the
width of a delimiter (of the same type) of big size. The following boolean corresponds to this option.

779 \bool_new:N \l_@@_delimiters_max_width_bool

780 \keys_define:nn { nicematrix / xdots }
781 {
782 nullify .bool_set:N = \l_@@_nullify_dots_bool ,
783 nullify .default:n = true ,
784 brace-shift .dim_set:N = \l_@@_brace_shift_dim ,
785 brace-shift .value_required:n = true ,
786 Vbrace .bool_set:N = \l_@@_Vbrace_bool ,
787 shorten-start .code:n =
788 \hook_gput_code:nnn { begindocument } { . }
789 { \dim_set:Nn \l_@@_xdots_shorten_start_dim { #1 } } ,
790 shorten-end .code:n =
791 \hook_gput_code:nnn { begindocument } { . }
792 { \dim_set:Nn \l_@@_xdots_shorten_end_dim { #1 } } ,
793 shorten-start .value_required:n = true ,
794 shorten-end .value_required:n = true ,
795 shorten .code:n =
796 \hook_gput_code:nnn { begindocument } { . }
797 {
798 \dim_set:Nn \l_@@_xdots_shorten_start_dim { #1 }
799 \dim_set:Nn \l_@@_xdots_shorten_end_dim { #1 }
800 } ,
801 shorten .value_required:n = true ,
802 horizontal-labels .bool_set:N = \l_@@_xdots_h_labels_bool ,
803 horizontal-labels .default:n = true ,
804 horizontal-label .bool_set:N = \l_@@_xdots_h_labels_bool ,
805 horizontal-label .default:n = true ,
806 line-style .code:n =
807 {
808 \bool_lazy_or:nnTF
809 { \cs_if_exist_p:N \tikzpicture }
810 { \str_if_eq_p:nn { #1 } { standard } }
811 { \tl_set:Nn \l_@@_xdots_line_style_tl { #1 } }
812 { \@@_error:n { bad~option~for~line-style } }
813 } ,
814 line-style .value_required:n = true ,
815 color .tl_set:N = \l_@@_xdots_color_tl ,
816 color .value_required:n = true ,
817 radius .code:n =
818 \hook_gput_code:nnn { begindocument } { . }
819 { \dim_set:Nn \l_@@_xdots_radius_dim { #1 } } ,
820 radius .value_required:n = true ,
821 inter .code:n =
822 \hook_gput_code:nnn { begindocument } { . }
823 { \dim_set:Nn \l_@@_xdots_inter_dim { #1 } } ,
824 radius .value_required:n = true ,

The options down, up and middle are not documented for the final user because he should use the
syntax with ^, _ and :. We use \tl_put_right:Nn and not \tl_set:Nn (or .tl_set:N) because we
don’t want a direct use of up=... erased by an absent ^{...}.

825 down .code:n = \tl_put_right:Nn \l_@@_xdots_down_tl { #1 } ,
826 up .code:n = \tl_put_right:Nn \l_@@_xdots_up_tl { #1 } ,
827 middle .code:n = \tl_put_right:Nn \l_@@_xdots_middle_tl { #1 } ,

29

The key draw-first, which is meant to be used only with \Ddots and \Iddots, will be caught when
\Ddots or \Iddots is used (during the construction of the array and not when we draw the dotted
lines).

828 draw-first .code:n = \prg_do_nothing: ,
829 unknown .code:n =
830 \@@_unknown_key:nn { nicematrix / xdots } { Unknown~key~for~xdots }
831 }

832 \keys_define:nn { nicematrix / rules }
833 {
834 color .tl_set:N = \l_@@_rules_color_tl ,
835 color .value_required:n = true ,
836 width .dim_set:N = \arrayrulewidth ,
837 width .value_required:n = true ,
838 unknown .code:n = \@@_error:n { Unknown~key~for~rules }
839 }

First, we define a set of keys “nicematrix / Global” which will be used (with the mechanism of
.inherit:n) by other sets of keys.

840 \keys_define:nn { nicematrix / Global }
841 {
842 caption-above .code:n = \@@_error_or_warning:n { caption-above~in~env } ,
843 show-cell-names .code = \@@_error_or_warning:n { show-cell-names } ,
844 color-inside .code:n = \@@_fatal:n { key~color-inside } ,
845 colortbl-like .code:n = \@@_fatal:n { key~color-inside } ,
846 ampersand-in-blocks .bool_set:N = \l_@@_amp_in_blocks_bool ,
847 ampersand-in-blocks .default:n = true ,
848 &-in-blocks .meta:n = ampersand-in-blocks ,
849 no-cell-nodes .code:n =
850 \bool_set_true:N \l_@@_no_cell_nodes_bool
851 \cs_set_protected:Npn \@@_node_cell:
852 { \set@color \box_use_drop:N \l_@@_cell_box } ,
853 no-cell-nodes .value_forbidden:n = true ,
854 rounded-corners .dim_set:N = \l_@@_tab_rounded_corners_dim ,
855 rounded-corners .default:n = 4 pt ,
856 custom-line .code:n = \@@_custom_line:n { #1 } ,
857 rules .code:n = \keys_set:nn { nicematrix / rules } { #1 } ,
858 rules .value_required:n = true ,
859 standard-cline .bool_set:N = \l_@@_standard_cline_bool ,
860 standard-cline .default:n = true ,
861 cell-space-top-limit .dim_set:N = \l_@@_cell_space_top_limit_dim ,
862 cell-space-top-limit .value_required:n = true ,
863 cell-space-bottom-limit .dim_set:N = \l_@@_cell_space_bottom_limit_dim ,
864 cell-space-bottom-limit .value_required:n = true ,
865 cell-space-limits .meta:n =
866 {
867 cell-space-top-limit = #1 ,
868 cell-space-bottom-limit = #1 ,
869 } ,
870 cell-space-limits .value_required:n = true ,
871 xdots .code:n = \keys_set:nn { nicematrix / xdots } { #1 } ,
872 light-syntax .code:n =
873 \bool_set_true:N \l_@@_light_syntax_bool
874 \bool_set_false:N \l_@@_light_syntax_expanded_bool ,
875 light-syntax .value_forbidden:n = true ,
876 light-syntax-expanded .code:n =
877 \bool_set_true:N \l_@@_light_syntax_bool
878 \bool_set_true:N \l_@@_light_syntax_expanded_bool ,
879 light-syntax-expanded .value_forbidden:n = true ,
880 end-of-row .tl_set:N = \l_@@_end_of_row_tl ,
881 end-of-row .value_required:n = true ,

30

882 first-col .code:n = \int_zero:N \l_@@_first_col_int ,
883 first-row .code:n = \int_zero:N \l_@@_first_row_int ,
884 last-row .int_set:N = \l_@@_last_row_int ,
885 last-row .default:n = -1 ,
886 code-for-first-col .tl_set:N = \l_@@_code_for_first_col_tl ,
887 code-for-first-col .value_required:n = true ,
888 code-for-last-col .tl_set:N = \l_@@_code_for_last_col_tl ,
889 code-for-last-col .value_required:n = true ,
890 code-for-first-row .tl_set:N = \l_@@_code_for_first_row_tl ,
891 code-for-first-row .value_required:n = true ,
892 code-for-last-row .tl_set:N = \l_@@_code_for_last_row_tl ,
893 code-for-last-row .value_required:n = true ,
894 hlines .clist_set:N = \l_@@_hlines_clist ,
895 vlines .clist_set:N = \l_@@_vlines_clist ,
896 hlines .default:n = all ,
897 vlines .default:n = all ,
898 vlines-in-sub-matrix .code:n =
899 {
900 \tl_if_single_token:nTF { #1 }
901 {
902 \tl_if_in:NnTF \c_@@_forbidden_letters_tl { #1 }
903 { \@@_error:nn { Forbidden~letter } { #1 } }

We write directly a command for the automata which reads the preamble provided by the final user.
904 { \cs_set_eq:cN { @@ _ #1 : } \@@_make_preamble_vlism:n }
905 }
906 { \@@_error:n { One~letter~allowed } }
907 } ,
908 vlines-in-sub-matrix .value_required:n = true ,
909 hvlines .code:n =
910 {
911 \bool_set_true:N \l_@@_hvlines_bool
912 \tl_set_eq:NN \l_@@_vlines_clist \c_@@_all_tl
913 \tl_set_eq:NN \l_@@_hlines_clist \c_@@_all_tl
914 } ,
915 hvlines .value_forbidden:n = true ,
916 hvlines-except-borders .code:n =
917 {
918 \tl_set_eq:NN \l_@@_vlines_clist \c_@@_all_tl
919 \tl_set_eq:NN \l_@@_hlines_clist \c_@@_all_tl
920 \bool_set_true:N \l_@@_hvlines_bool
921 \bool_set_true:N \l_@@_except_borders_bool
922 } ,
923 hvlines-except-borders .value_forbidden:n = true ,
924 parallelize-diags .bool_set:N = \l_@@_parallelize_diags_bool ,

With the option renew-dots, the command \cdots, \ldots, \vdots, \ddots, etc. are redefined and
behave like the commands \Cdots, \Ldots, \Vdots, \Ddots, etc.

925 renew-dots .bool_set:N = \l_@@_renew_dots_bool ,
926 renew-dots .value_forbidden:n = true ,
927 nullify-dots .bool_set:N = \l_@@_nullify_dots_bool ,
928 create-medium-nodes .bool_set:N = \l_@@_medium_nodes_bool ,
929 create-large-nodes .bool_set:N = \l_@@_large_nodes_bool ,
930 create-extra-nodes .meta:n =
931 { create-medium-nodes , create-large-nodes } ,
932 left-margin .dim_set:N = \l_@@_left_margin_dim ,
933 left-margin .default:n = \arraycolsep ,
934 right-margin .dim_set:N = \l_@@_right_margin_dim ,
935 right-margin .default:n = \arraycolsep ,
936 margin .meta:n = { left-margin = #1 , right-margin = #1 } ,
937 margin .default:n = \arraycolsep ,
938 extra-left-margin .dim_set:N = \l_@@_extra_left_margin_dim ,
939 extra-right-margin .dim_set:N = \l_@@_extra_right_margin_dim ,

31

940 extra-margin .meta:n =
941 { extra-left-margin = #1 , extra-right-margin = #1 } ,
942 extra-margin .value_required:n = true ,
943 respect-arraystretch .code:n =
944 \cs_set_eq:NN \@@_reset_arraystretch: \prg_do_nothing: ,
945 respect-arraystretch .value_forbidden:n = true ,
946 pgf-node-code .tl_set:N = \l_@@_pgf_node_code_tl ,
947 pgf-node-code .value_required:n = true
948 }

We define a set of keys used by the environments of nicematrix (but not by the command
\NiceMatrixOptions).

949 \keys_define:nn { nicematrix / environments }
950 {
951 corners .clist_set:N = \l_@@_corners_clist ,
952 corners .default:n = { NW , SW , NE , SE } ,
953 code-before .code:n =
954 {
955 \tl_if_empty:nF { #1 }
956 {
957 \tl_gput_left:Nn \g_@@_pre_code_before_tl { #1 }
958 \bool_set_true:N \l_@@_code_before_bool
959 }
960 } ,
961 code-before .value_required:n = true ,

The options c, t and b of the environment {NiceArray} have the same meaning as the option of the
classical environment {array}.

962 c .code:n = \tl_set:Nn \l_@@_baseline_tl c ,
963 t .code:n = \tl_set:Nn \l_@@_baseline_tl t ,
964 b .code:n = \tl_set:Nn \l_@@_baseline_tl b ,
965 baseline .tl_set:N = \l_@@_baseline_tl ,
966 baseline .value_required:n = true ,
967 columns-width .code:n =

We use \str_if_eq:nnTF which is slightly faster than \tl_if_eq:nnTF (and is expandable).
\str_if_eq:ee(TF) is faster than \str_if_eq:nn(TF).

968 \str_if_eq:eeTF { #1 } { auto }
969 { \bool_set_true:N \l_@@_auto_columns_width_bool }
970 { \dim_set:Nn \l_@@_columns_width_dim { #1 } } ,
971 columns-width .value_required:n = true ,
972 name .code:n =

We test whether we are in the measuring phase of an environment of amsmath (always loaded by
nicematrix) because we want to avoid a fallacious message of duplicate name in this case.

973 \legacy_if:nF { measuring@ }
974 {
975 \str_set:Ne \l_@@_name_str { #1 }
976 \clist_if_in:NoTF \g_@@_names_clist \l_@@_name_str
977 { \@@_err_duplicate_names:n { #1 } }
978 { \clist_gpush:No \g_@@_names_clist \l_@@_name_str }
979 } ,
980 name .value_required:n = true ,
981 code-after .tl_gset:N = \g_nicematrix_code_after_tl ,
982 code-after .value_required:n = true ,
983 }

984 \cs_set:Npn \@@_err_duplicate_names:n #1
985 { \@@_error:nn { Duplicate~name } { #1 } }

986 \keys_define:nn { nicematrix / notes }
987 {
988 para .bool_set:N = \l_@@_notes_para_bool ,
989 para .default:n = true ,

32

990 code-before .tl_set:N = \l_@@_notes_code_before_tl ,
991 code-before .value_required:n = true ,
992 code-after .tl_set:N = \l_@@_notes_code_after_tl ,
993 code-after .value_required:n = true ,
994 bottomrule .bool_set:N = \l_@@_notes_bottomrule_bool ,
995 bottomrule .default:n = true ,
996 style .cs_set:Np = \@@_notes_style:n #1 ,
997 style .value_required:n = true ,
998 label-in-tabular .cs_set:Np = \@@_notes_label_in_tabular:n #1 ,
999 label-in-tabular .value_required:n = true ,

1000 label-in-list .cs_set:Np = \@@_notes_label_in_list:n #1 ,
1001 label-in-list .value_required:n = true ,
1002 enumitem-keys .code:n =
1003 {
1004 \hook_gput_code:nnn { begindocument } { . }
1005 {
1006 \IfPackageLoadedT { enumitem }
1007 { \setlist* [tabularnotes] { #1 } }
1008 }
1009 } ,
1010 enumitem-keys .value_required:n = true ,
1011 enumitem-keys-para .code:n =
1012 {
1013 \hook_gput_code:nnn { begindocument } { . }
1014 {
1015 \IfPackageLoadedT { enumitem }
1016 { \setlist* [tabularnotes*] { #1 } }
1017 }
1018 } ,
1019 enumitem-keys-para .value_required:n = true ,
1020 detect-duplicates .bool_set:N = \l_@@_notes_detect_duplicates_bool ,
1021 detect-duplicates .default:n = true ,
1022 unknown .code:n =
1023 \@@_unknown_key:nn { nicematrix / notes } { Unknown~key~for~notes }
1024 }

1025 \keys_define:nn { nicematrix / delimiters }
1026 {
1027 max-width .bool_set:N = \l_@@_delimiters_max_width_bool ,
1028 max-width .default:n = true ,
1029 color .tl_set:N = \l_@@_delimiters_color_tl ,
1030 color .value_required:n = true ,
1031 }

We begin the construction of the major sets of keys (used by the different user commands and
environments).

1032 \keys_define:nn { nicematrix }
1033 {
1034 NiceMatrixOptions .inherit:n =
1035 { nicematrix / Global } ,
1036 NiceMatrixOptions / xdots .inherit:n = nicematrix / xdots ,
1037 NiceMatrixOptions / rules .inherit:n = nicematrix / rules ,
1038 NiceMatrixOptions / notes .inherit:n = nicematrix / notes ,
1039 NiceMatrixOptions / sub-matrix .inherit:n = nicematrix / sub-matrix ,
1040 SubMatrix / rules .inherit:n = nicematrix / rules ,
1041 CodeAfter / xdots .inherit:n = nicematrix / xdots ,
1042 CodeBefore / sub-matrix .inherit:n = nicematrix / sub-matrix ,
1043 CodeAfter / sub-matrix .inherit:n = nicematrix / sub-matrix ,
1044 NiceMatrix .inherit:n =
1045 {
1046 nicematrix / Global ,
1047 nicematrix / environments ,
1048 } ,

33

1049 NiceMatrix / xdots .inherit:n = nicematrix / xdots ,
1050 NiceMatrix / rules .inherit:n = nicematrix / rules ,
1051 NiceTabular .inherit:n =
1052 {
1053 nicematrix / Global ,
1054 nicematrix / environments
1055 } ,
1056 NiceTabular / xdots .inherit:n = nicematrix / xdots ,
1057 NiceTabular / rules .inherit:n = nicematrix / rules ,
1058 NiceTabular / notes .inherit:n = nicematrix / notes ,
1059 NiceArray .inherit:n =
1060 {
1061 nicematrix / Global ,
1062 nicematrix / environments ,
1063 } ,
1064 NiceArray / xdots .inherit:n = nicematrix / xdots ,
1065 NiceArray / rules .inherit:n = nicematrix / rules ,
1066 pNiceArray .inherit:n =
1067 {
1068 nicematrix / Global ,
1069 nicematrix / environments ,
1070 } ,
1071 pNiceArray / xdots .inherit:n = nicematrix / xdots ,
1072 pNiceArray / rules .inherit:n = nicematrix / rules ,
1073 }

We finalise the definition of the set of keys “nicematrix / NiceMatrixOptions” with the options
specific to \NiceMatrixOptions.

1074 \keys_define:nn { nicematrix / NiceMatrixOptions }
1075 {
1076 delimiters / color .tl_set:N = \l_@@_delimiters_color_tl ,
1077 delimiters / color .value_required:n = true ,
1078 delimiters / max-width .bool_set:N = \l_@@_delimiters_max_width_bool ,
1079 delimiters / max-width .default:n = true ,
1080 delimiters .code:n = \keys_set:nn { nicematrix / delimiters } { #1 } ,
1081 delimiters .value_required:n = true ,
1082 width .dim_set:N = \l_@@_width_dim ,
1083 width .value_required:n = true ,
1084 last-col .code:n =
1085 \tl_if_empty:nF { #1 }
1086 { \@@_error:n { last-col~non~empty~for~NiceMatrixOptions } }
1087 \int_zero:N \l_@@_last_col_int ,
1088 small .bool_set:N = \l_@@_small_bool ,
1089 small .value_forbidden:n = true ,

With the option renew-matrix, the environment {matrix} of amsmath and its variants are redefined
to behave like the environment {NiceMatrix} and its variants.

1090 renew-matrix .code:n = \@@_renew_matrix: ,
1091 renew-matrix .value_forbidden:n = true ,

The option exterior-arraycolsep will have effect only in {NiceArray} for those who want to have
for {NiceArray} the same behaviour as {array}.

1092 exterior-arraycolsep .bool_set:N = \l_@@_exterior_arraycolsep_bool ,

If the option columns-width is used, all the columns will have the same width.
In \NiceMatrixOptions, the special value auto is not available.

1093 columns-width .code:n =

We use \str_if_eq:nnTF which is slightly faster than \tl_if_eq:nnTF. \str_if_eq:ee(TF) is faster
than \str_if_eq:nn(TF).

1094 \str_if_eq:eeTF { #1 } { auto }
1095 { \@@_error:n { Option~auto~for~columns-width } }
1096 { \dim_set:Nn \l_@@_columns_width_dim { #1 } } ,

34

Usually, an error is raised when the user tries to give the same name to two distincts environments
of nicematrix (these names are global and not local to the current TeX scope). However, the option
allow-duplicate-names disables this feature.

1097 allow-duplicate-names .code:n =
1098 \cs_set:Nn \@@_err_duplicate_names:n { } ,
1099 allow-duplicate-names .value_forbidden:n = true ,
1100 notes .code:n = \keys_set:nn { nicematrix / notes } { #1 } ,
1101 notes .value_required:n = true ,
1102 sub-matrix .code:n = \keys_set:nn { nicematrix / sub-matrix } { #1 } ,
1103 sub-matrix .value_required:n = true ,
1104 matrix / columns-type .tl_set:N = \l_@@_columns_type_tl ,
1105 matrix / columns-type .value_required:n = true ,
1106 caption-above .bool_set:N = \l_@@_caption_above_bool ,
1107 caption-above .default:n = true ,
1108 unknown .code:n =
1109 \@@_unknown_key:nn
1110 { nicematrix / Global , nicematrix / NiceMatrixOptions }
1111 { Unknown~key~for~NiceMatrixOptions }
1112 }

\NiceMatrixOptions is the command of the nicematrix package to fix options at the document level.
The scope of these specifications is the current TeX group.

1113 \NewDocumentCommand \NiceMatrixOptions { m }
1114 { \keys_set:nn { nicematrix / NiceMatrixOptions } { #1 } }

We finalise the definition of the set of keys “nicematrix / NiceMatrix”. That set of keys will be
used by {NiceMatrix}, {pNiceMatrix}, {bNiceMatrix}, etc.

1115 \keys_define:nn { nicematrix / NiceMatrix }
1116 {
1117 last-col .code:n = \tl_if_empty:nTF { #1 }
1118 {
1119 \bool_set_true:N \l_@@_last_col_without_value_bool
1120 \int_set:Nn \l_@@_last_col_int { -1 }
1121 }
1122 { \int_set:Nn \l_@@_last_col_int { #1 } } ,
1123 columns-type .tl_set:N = \l_@@_columns_type_tl ,
1124 columns-type .value_required:n = true ,
1125 l .meta:n = { columns-type = l } ,
1126 r .meta:n = { columns-type = r } ,
1127 delimiters / color .tl_set:N = \l_@@_delimiters_color_tl ,
1128 delimiters / color .value_required:n = true ,
1129 delimiters / max-width .bool_set:N = \l_@@_delimiters_max_width_bool ,
1130 delimiters / max-width .default:n = true ,
1131 delimiters .code:n = \keys_set:nn { nicematrix / delimiters } { #1 } ,
1132 delimiters .value_required:n = true ,
1133 small .bool_set:N = \l_@@_small_bool ,
1134 small .value_forbidden:n = true ,
1135 unknown .code:n = \@@_error:n { Unknown~key~for~NiceMatrix }
1136 }

We finalise the definition of the set of keys “nicematrix / NiceArray” with the options specific to
{NiceArray}.

1137 \keys_define:nn { nicematrix / NiceArray }
1138 {

In the environments {NiceArray} and its variants, the option last-col must be used without value
because the number of columns of the array is read from the preamble of the array.

1139 small .bool_set:N = \l_@@_small_bool ,
1140 small .value_forbidden:n = true ,
1141 last-col .code:n = \tl_if_empty:nF { #1 }
1142 { \@@_error:n { last-col~non~empty~for~NiceArray } }

35

1143 \int_zero:N \l_@@_last_col_int ,
1144 r .code:n = \@@_error:n { r~or~l~with~preamble } ,
1145 l .code:n = \@@_error:n { r~or~l~with~preamble } ,
1146 unknown .code:n =
1147 \@@_unknown_key:nn
1148 { nicematrix / NiceArray , nicematrix / Global , nicematrix / environments}
1149 { Unknown~key~for~NiceArray }
1150 }

1151 \keys_define:nn { nicematrix / pNiceArray }
1152 {
1153 first-col .code:n = \int_zero:N \l_@@_first_col_int ,
1154 last-col .code:n = \tl_if_empty:nF { #1 }
1155 { \@@_error:n { last-col~non~empty~for~NiceArray } }
1156 \int_zero:N \l_@@_last_col_int ,
1157 first-row .code:n = \int_zero:N \l_@@_first_row_int ,
1158 delimiters / color .tl_set:N = \l_@@_delimiters_color_tl ,
1159 delimiters / color .value_required:n = true ,
1160 delimiters / max-width .bool_set:N = \l_@@_delimiters_max_width_bool ,
1161 delimiters / max-width .default:n = true ,
1162 delimiters .code:n = \keys_set:nn { nicematrix / delimiters } { #1 } ,
1163 delimiters .value_required:n = true ,
1164 small .bool_set:N = \l_@@_small_bool ,
1165 small .value_forbidden:n = true ,
1166 r .code:n = \@@_error:n { r~or~l~with~preamble } ,
1167 l .code:n = \@@_error:n { r~or~l~with~preamble } ,
1168 unknown .code:n =
1169 \@@_unknown_key:nn
1170 { nicematrix / pNiceArray , nicematrix / Global , nicematrix / environments }
1171 { Unknown~key~for~NiceMatrix }
1172 }

We finalise the definition of the set of keys “nicematrix / NiceTabular” with the options specific
to {NiceTabular}.

1173 \keys_define:nn { nicematrix / NiceTabular }
1174 {

The dimension width will be used if at least a column of type X is used. If there is no column of type
X, an error will be raised.

1175 width .code:n = \dim_set:Nn \l_@@_width_dim { #1 }
1176 \bool_set_true:N \l_@@_width_used_bool ,
1177 width .value_required:n = true ,
1178 notes .code:n = \keys_set:nn { nicematrix / notes } { #1 } ,
1179 tabularnote .tl_gset:N = \g_@@_tabularnote_tl ,
1180 tabularnote .value_required:n = true ,
1181 caption .tl_set:N = \l_@@_caption_tl ,
1182 caption .value_required:n = true ,
1183 short-caption .tl_set:N = \l_@@_short_caption_tl ,
1184 short-caption .value_required:n = true ,
1185 label .tl_set:N = \l_@@_label_tl ,
1186 label .value_required:n = true ,
1187 last-col .code:n = \tl_if_empty:nF { #1 }
1188 { \@@_error:n { last-col~non~empty~for~NiceArray } }
1189 \int_zero:N \l_@@_last_col_int ,
1190 r .code:n = \@@_error:n { r~or~l~with~preamble } ,
1191 l .code:n = \@@_error:n { r~or~l~with~preamble } ,
1192 unknown .code:n =
1193 \@@_unknown_key:nn
1194 { nicematrix / NiceTabular , nicematrix / Global , nicematrix / environments }
1195 { Unknown~key~for~NiceTabular }
1196 }

36

The \CodeAfter (inserted with the key code-after or after the keyword \CodeAfter) may always
begin with a list of pairs key=value between square brackets. Here is the corresponding set of keys.
We must put the following instructions after the :

CodeAfter / sub-matrix .inherit:n = nicematrix / sub-matrix

1197 \keys_define:nn { nicematrix / CodeAfter }
1198 {
1199 delimiters / color .tl_set:N = \l_@@_delimiters_color_tl ,
1200 delimiters / color .value_required:n = true ,
1201 rules .code:n = \keys_set:nn { nicematrix / rules } { #1 } ,
1202 rules .value_required:n = true ,
1203 xdots .code:n = \keys_set:nn { nicematrix / xdots } { #1 } ,
1204 sub-matrix .code:n = \keys_set:nn { nicematrix / sub-matrix } { #1 } ,
1205 sub-matrix .value_required:n = true ,
1206 unknown .code:n = \@@_error:n { Unknown~key~for~CodeAfter }
1207 }

8 Important code used by {NiceArrayWithDelims}

The pseudo-environment \@@_cell_begin:–\@@_cell_end: will be used to format the cells of the
array. In the code, the affectations are global because this pseudo-environment will be used in the
cells of a \halign (via an environment {array}).

1208 \cs_new_protected:Npn \@@_cell_begin:
1209 {

\g_@@_cell_after_hook_tl will be set during the composition of the box \l_@@_cell_box and will
be used after the composition in order to modify that box.

1210 \tl_gclear:N \g_@@_cell_after_hook_tl

At the beginning of the cell, we link \CodeAfter to a command which do begin with \\ (whereas the
standard version of \CodeAfter does not).

1211 \cs_set_eq:NN \CodeAfter \@@_CodeAfter_i:

The following link only to have a better error message when \Hline is used in another place than
the beginning of a line.

1212 \cs_set_eq:NN \Hline \@@_Hline_in_cell:

We increment the LaTeX counter jCol, which is the counter of the columns.
1213 \int_gincr:N \c@jCol

Now, we increment the counter of the rows. We don’t do this incrementation in the \everycr
because some packages, like arydshln, create special rows in the \halign that we don’t want to take
into account.

1214 \int_compare:nNnT { \c@jCol } = { \c_one_int }
1215 {
1216 \int_compare:nNnT { \l_@@_first_col_int } = { \c_one_int }
1217 { \@@_begin_of_row: }
1218 }

The content of the cell is composed in the box \l_@@_cell_box. The \hbox_set_end: corresponding
to this \hbox_set:Nw is in the \@@_cell_end:.

1219 \hbox_set:Nw \l_@@_cell_box

The following command is nullified in the tabulars.
1220 \@@_tuning_not_tabular_begin:

1221 \@@_tuning_first_row:
1222 \@@_tuning_last_row:
1223 \g_@@_row_style_tl
1224 }

37

The following command will be nullified unless there is a first row.
Here is a version with the standard syntax of L3.

\cs_new_protected:Npn \@@_tuning_first_row:
{
\int_if_zero:nT { \c@iRow }
{
\int_if_zero:nF { \c@jCol }
{
\l_@@_code_for_first_row_tl
\xglobal \colorlet { nicematrix-first-row } { . }

}
}

}

We will use a version a little more efficient.
1225 \cs_new_protected:Npn \@@_tuning_first_row:
1226 {
1227 \if_int_compare:w \c@iRow = \c_zero_int
1228 \if_int_compare:w \c@jCol > \c_zero_int
1229 \l_@@_code_for_first_row_tl
1230 \xglobal \colorlet { nicematrix-first-row } { . }
1231 \fi:
1232 \fi:
1233 }

The following command will be nullified unless there is a last row and we know its value (ie:
\l_@@_lat_row_int > 0).

\cs_new_protected:Npn \@@_tuning_last_row:
{
\int_compare:nNnT { \c@iRow } = { \l_@@_last_row_int }
{
\l_@@_code_for_last_row_tl
\xglobal \colorlet { nicematrix-last-row } { . }

}
}

We will use a version a little more efficient.
1234 \cs_new_protected:Npn \@@_tuning_last_row:
1235 {
1236 \if_int_compare:w \c@iRow = \l_@@_last_row_int
1237 \l_@@_code_for_last_row_tl
1238 \xglobal \colorlet { nicematrix-last-row } { . }
1239 \fi:
1240 }

A different value will be provided to the following commands when the key small is in force.
1241 \cs_set_eq:NN \@@_tuning_key_small: \prg_do_nothing:

The following commands are nullified in the tabulars.
1242 \cs_set_nopar:Npn \@@_tuning_not_tabular_begin:
1243 {
1244 \m@th
1245 $ % $

A special value is provided by the following control sequence when the key small is in force.
1246 \@@_tuning_key_small:
1247 }
1248 \cs_set:Nn \@@_tuning_not_tabular_end: { $ } % $

38

The following macro \@@_begin_of_row is usually used in the cell number 1 of the row. However,
when the key first-col is used, \@@_begin_of_row is executed in the cell number 0 of the row.

1249 \cs_new_protected:Npn \@@_begin_of_row:
1250 {
1251 \int_gincr:N \c@iRow
1252 \dim_gset_eq:NN \g_@@_dp_ante_last_row_dim \g_@@_dp_last_row_dim
1253 \dim_gset:Nn \g_@@_dp_last_row_dim { \box_dp:N \@arstrutbox }
1254 \dim_gset:Nn \g_@@_ht_last_row_dim { \box_ht:N \@arstrutbox }
1255 \pgfpicture
1256 \pgfrememberpicturepositiononpagetrue
1257 \pgfcoordinate
1258 { \@@_env: - row - \int_use:N \c@iRow - base }
1259 { \pgfpoint \c_zero_dim { 0.5 \arrayrulewidth } }
1260 \str_if_empty:NF \l_@@_name_str
1261 {
1262 \pgfnodealias
1263 { \l_@@_name_str - row - \int_use:N \c@iRow - base }
1264 { \@@_env: - row - \int_use:N \c@iRow - base }
1265 }
1266 \endpgfpicture
1267 }

Remark: If the key create-cell-nodes of the \CodeBefore is used, then we will add some lines to
that command.

The following code is used in each cell of the array. It actualises quantities that, at the end of the
array, will give information about the vertical dimension of the two first rows and the two last rows.
If the user uses the last-row, some lines of code will be dynamically added to this command.

1268 \cs_new_protected:Npn \@@_update_for_first_and_last_row:
1269 {
1270 \int_if_zero:nTF { \c@iRow }
1271 {
1272 \dim_compare:nNnT
1273 { \box_dp:N \l_@@_cell_box } > { \g_@@_dp_row_zero_dim }
1274 { \dim_gset:Nn \g_@@_dp_row_zero_dim { \box_dp:N \l_@@_cell_box } }
1275 \dim_compare:nNnT
1276 { \box_ht:N \l_@@_cell_box } > { \g_@@_ht_row_zero_dim }
1277 { \dim_gset:Nn \g_@@_ht_row_zero_dim { \box_ht:N \l_@@_cell_box } }
1278 }
1279 {
1280 \int_compare:nNnT { \c@iRow } = { \c_one_int }
1281 {
1282 \dim_compare:nNnT
1283 { \box_ht:N \l_@@_cell_box } > { \g_@@_ht_row_one_dim }
1284 { \dim_gset:Nn \g_@@_ht_row_one_dim { \box_ht:N \l_@@_cell_box } }
1285 }
1286 }
1287 }

1288 \cs_new_protected:Npn \@@_rotate_cell_box:
1289 {
1290 \box_rotate:Nn \l_@@_cell_box { 90 }
1291 \bool_if:NTF \g_@@_rotate_c_bool
1292 {
1293 \hbox_set:Nn \l_@@_cell_box
1294 {
1295 \m@th
1296 $ % $
1297 \vcenter { \box_use:N \l_@@_cell_box }
1298 $ % $
1299 }
1300 }
1301 {

39

1302 \int_compare:nNnT { \c@iRow } = { \l_@@_last_row_int }
1303 {
1304 \vbox_set_top:Nn \l_@@_cell_box
1305 {
1306 \vbox_to_zero:n { }
1307 \skip_vertical:n { - \box_ht:N \@arstrutbox + 0.8 ex }
1308 \box_use:N \l_@@_cell_box
1309 }
1310 }
1311 }
1312 \bool_gset_false:N \g_@@_rotate_bool
1313 \bool_gset_false:N \g_@@_rotate_c_bool
1314 }

1315 \cs_new_protected:Npn \@@_adjust_size_box:
1316 {
1317 \dim_compare:nNnT { \g_@@_blocks_wd_dim } > { \c_zero_dim }
1318 {
1319 \box_set_wd:Nn \l_@@_cell_box
1320 { \dim_max:nn { \box_wd:N \l_@@_cell_box } { \g_@@_blocks_wd_dim } }
1321 \dim_gzero:N \g_@@_blocks_wd_dim
1322 }
1323 \dim_compare:nNnT { \g_@@_blocks_dp_dim } > { \c_zero_dim }
1324 {
1325 \box_set_dp:Nn \l_@@_cell_box
1326 { \dim_max:nn { \box_dp:N \l_@@_cell_box } { \g_@@_blocks_dp_dim } }
1327 \dim_gzero:N \g_@@_blocks_dp_dim
1328 }
1329 \dim_compare:nNnT { \g_@@_blocks_ht_dim } > { \c_zero_dim }
1330 {
1331 \box_set_ht:Nn \l_@@_cell_box
1332 { \dim_max:nn { \box_ht:N \l_@@_cell_box } { \g_@@_blocks_ht_dim } }
1333 \dim_gzero:N \g_@@_blocks_ht_dim
1334 }
1335 }

1336 \cs_new_protected:Npn \@@_cell_end:
1337 {

The following command is nullified in the tabulars.
1338 \@@_tuning_not_tabular_end:
1339 \hbox_set_end:
1340 \@@_cell_end_i:
1341 }

1342 \cs_new_protected:Npn \@@_cell_end_i:
1343 {

The token list \g_@@_cell_after_hook_tl is (potentially) set during the composition of the box
\l_@@_cell_box and is used now after the composition in order to modify that box.

1344 \g_@@_cell_after_hook_tl
1345 \bool_if:NT \g_@@_rotate_bool { \@@_rotate_cell_box: }
1346 \@@_adjust_size_box:

1347 \box_set_ht:Nn \l_@@_cell_box
1348 { \box_ht:N \l_@@_cell_box + \l_@@_cell_space_top_limit_dim }
1349 \box_set_dp:Nn \l_@@_cell_box
1350 { \box_dp:N \l_@@_cell_box + \l_@@_cell_space_bottom_limit_dim }

We want to compute in \g_@@_max_cell_width_dim the width of the widest cell of the array (except
the cells of the “first column” and the “last column”).

1351 \@@_update_max_cell_width:

The following computations are for the “first row” and the “last row”.
1352 \@@_update_for_first_and_last_row:

If the cell is empty, or may be considered as if, we must not create the pgf node, for two reasons:

40

• it’s a waste of time since such a node would be rather pointless;

• we test the existence of these nodes in order to determine whether a cell is empty when we
search the extremities of a dotted line.

However, it’s difficult to determine whether a cell is empty. Up to now we use the following technique:

• for the columns of type p, m, b, V (of varwidth) or X, we test whether the cell is syntactically
empty with \@@_test_if_empty: and \@@_test_if_empty_for_S:

• if the width of the box \l_@@_cell_box (created with the content of the cell) is equal to zero,
we consider the cell as empty (however, this is not perfect since the user may have used a \rlap,
\llap, \clap or a \mathclap of mathtools).

• the cells with a command \Ldots or \Cdots, \Vdots, etc., should also be considered as empty;
if nullify-dots is in force, there would be nothing to do (in this case the previous commands
only write an instruction in a kind of \CodeAfter); however, if nullify-dots is not in force, a
phantom of \ldots, \cdots, \vdots is inserted and its width is not equal to zero; that’s why
these commands raise a boolean \g_@@_empty_cell_bool and we begin by testing this boolean.

1353 \bool_if:NTF \g_@@_empty_cell_bool
1354 { \box_use_drop:N \l_@@_cell_box }
1355 {
1356 \bool_if:NTF \g_@@_not_empty_cell_bool
1357 { \@@_print_node_cell: }
1358 {
1359 \dim_compare:nNnTF { \box_wd:N \l_@@_cell_box } > { \c_zero_dim }
1360 { \@@_print_node_cell: }
1361 { \box_use_drop:N \l_@@_cell_box }
1362 }
1363 }
1364 \int_compare:nNnT { \c@jCol } > { \g_@@_col_total_int }
1365 { \int_gset_eq:NN \g_@@_col_total_int \c@jCol }
1366 \bool_gset_false:N \g_@@_empty_cell_bool
1367 \bool_gset_false:N \g_@@_not_empty_cell_bool
1368 }

The following command will be nullified in our redefinition of \multicolumn.
1369 \cs_new_protected:Npn \@@_update_max_cell_width:
1370 {
1371 \dim_gset:Nn \g_@@_max_cell_width_dim
1372 { \dim_max:nn { \g_@@_max_cell_width_dim } { \box_wd:N \l_@@_cell_box } }
1373 }

The following variant of \@@_cell_end: is only for the columns of type w{s}{...} or W{s}{...}
(which use the horizontal alignment key s of \makebox).

1374 \cs_new_protected:Npn \@@_cell_end_for_w_s:
1375 {
1376 \@@_math_toggle:
1377 \hbox_set_end:
1378 \bool_if:NF \g_@@_rotate_bool
1379 {
1380 \hbox_set:Nn \l_@@_cell_box
1381 {
1382 \makebox [\l_@@_col_width_dim] [s]
1383 { \hbox_unpack_drop:N \l_@@_cell_box }
1384 }
1385 }
1386 \@@_cell_end_i:
1387 }

41

1388 \pgfset
1389 {
1390 nicematrix / cell-node /.style =
1391 {
1392 inner~sep = \c_zero_dim ,
1393 minimum~width = \c_zero_dim
1394 }
1395 }

In the cells of a column of type S (of siunitx), we have to wrap the command \@@_node_cell: inside
a command of siunitx to inforce the correct horizontal alignment. In the cells of the columns with
other columns type, we don’t have to do that job. That’s why we create a socket with its default
plug (identity) and a plug when we have to do the wrapping.

1396 \socket_new:nn { nicematrix / siunitx-wrap } { 1 }
1397 \socket_new_plug:nnn { nicematrix / siunitx-wrap } { active }
1398 {
1399 \use:c
1400 {
1401 __siunitx_table_align_
1402 \bool_if:NTF \l__siunitx_table_text_bool
1403 { \l__siunitx_table_align_text_tl }
1404 { \l__siunitx_table_align_number_tl }
1405 :n
1406 }
1407 { #1 }
1408 }

Now, a socket which deal with create-cell-nodes of the keyword \CodeBefore. When that key is
used the “cell nodes” will be created before the \CodeBefore but, of course, they are always available
in the main tabular and after!

1409 \socket_new:nn { nicematrix / create-cell-nodes } { 1 }
1410 \socket_new_plug:nnn { nicematrix / create-cell-nodes } { active }
1411 {
1412 \box_move_up:nn { \box_ht:N \l_@@_cell_box }
1413 \hbox:n
1414 {
1415 \pgfsys@markposition
1416 { \@@_env: - \int_use:N \c@iRow - \int_use:N \c@jCol - NW }
1417 }
1418 #1
1419 \box_move_down:nn { \box_dp:N \l_@@_cell_box }
1420 \hbox:n
1421 {
1422 \pgfsys@markposition
1423 { \@@_env: - \int_use:N \c@iRow - \int_use:N \c@jCol - SE }
1424 }
1425 }

1426 \cs_new_protected:Npn \@@_print_node_cell:
1427 {
1428 \socket_use:nn { nicematrix / siunitx-wrap }
1429 { \socket_use:nn { nicematrix / create-cell-nodes } { \@@_node_cell: } }
1430 }

The following command creates the pgf name of the node with, of course, \l_@@_cell_box as the
content.

1431 \cs_new_protected:Npn \@@_node_cell:
1432 {
1433 \pgfpicture
1434 \pgfsetbaseline \c_zero_dim

42

1435 \pgfrememberpicturepositiononpagetrue
1436 \pgfset { nicematrix / cell-node }
1437 \pgfnode
1438 { rectangle }
1439 { base }
1440 {

The following instruction \set@color has been added on 2022/10/06. It’s necessary only with Xe-
LaTeX and not with the other engines (we don’t know why).

1441 \sys_if_engine_xetex:T { \set@color }
1442 \box_use:N \l_@@_cell_box
1443 }
1444 { \@@_env: - \int_use:N \c@iRow - \int_use:N \c@jCol }
1445 { \l_@@_pgf_node_code_tl }
1446 \str_if_empty:NF \l_@@_name_str
1447 {
1448 \pgfnodealias
1449 { \l_@@_name_str - \int_use:N \c@iRow - \int_use:N \c@jCol }
1450 { \@@_env: - \int_use:N \c@iRow - \int_use:N \c@jCol }
1451 }
1452 \endpgfpicture
1453 }

The second argument of the following command \@@_instruction_of_type:nnn defined below is
the type of the instruction (Cdots, Vdots, Ddots, etc.). The third argument is the list of options.
This command writes in the corresponding \g_@@_type_lines_tl the instruction which will actually
draw the line after the construction of the matrix.

For example, for the following matrix,
\begin{pNiceMatrix}
1 & 2 & 3 & 4 \\
5 & \Cdots & & 6 \\
7 & \Cdots[color=red]
\end{pNiceMatrix}

1 2 3 4
5 6
7


the content of \g_@@_Cdots_lines_tl will be:
\@@_draw_Cdots:nnn {2}{2}{}
\@@_draw_Cdots:nnn {3}{2}{color=red}

The first argument is a boolean which indicates whether you must put the instruction on the left
or on the right on the list of instructions (with consequences for the parallelisation of the diagonal
lines).

1454 \cs_new_protected:Npn \@@_instruction_of_type:nnn #1 #2 #3
1455 {
1456 \bool_if:nTF { #1 } { \tl_gput_left:ce } { \tl_gput_right:ce }
1457 { g_@@_ #2 _ lines _ tl }
1458 {
1459 \use:c { @@ _ draw _ #2 : nnn }
1460 { \int_use:N \c@iRow }
1461 { \int_use:N \c@jCol }
1462 { \exp_not:n { #3 } }
1463 }
1464 }

1465 \cs_new_protected:Npn \@@_array:n
1466 {
1467 \dim_set:Nn \col@sep
1468 { \bool_if:NTF \l_@@_tabular_bool { \tabcolsep } { \arraycolsep } }
1469 \dim_compare:nNnTF { \l_@@_tabular_width_dim } = { \c_zero_dim }
1470 { \def \@halignto { } }
1471 { \cs_set_nopar:Npe \@halignto { to \dim_use:N \l_@@_tabular_width_dim } }

43

It colortbl is loaded, \@tabarray has been redefined to incorporate \CT@start.
1472 \@tabarray

\l_@@_baseline_tl may have the value t, c or b. However, if the value is b, we compose
the \array (of array) with the option t and the right translation will be done further. Re-
mark that \str_if_eq:eeTF is fully expandable and we need something fully expandable here.
\str_if_eq:ee(TF) is faster than \str_if_eq:nn(TF).

1473 [\str_if_eq:eeTF { \l_@@_baseline_tl } { c } { c } { t }]
1474 }
1475 \cs_generate_variant:Nn \@@_array:n { o }

We keep in memory the standard version of \ar@ialign because we will redefine \ialign in the
environment {NiceArrayWithDelims} but restore the standard version for use in the cells of the
array. However, it seems that RevTeX goes on with a redefinition of array which uses \ialign.

1476 \bool_if:NTF \c_@@_revtex_bool
1477 { \cs_set_eq:NN \@@_old_ialign: \ialign }

We use here a \cs_set_eq:cN instead of a \cs_set_eq:NN in order to avoid a message when
explcheck is used on nicematrix.sty.

1478 { \cs_set_eq:cN { @@_old_ar@ialign: } \ar@ialign }

The following command creates a row node (and not a row of nodes!).
1479 \cs_new_protected:Npn \@@_create_row_node:
1480 {
1481 \int_compare:nNnT { \c@iRow } > { \g_@@_last_row_node_int }
1482 {
1483 \int_gset_eq:NN \g_@@_last_row_node_int \c@iRow
1484 \@@_create_row_node_i:
1485 }
1486 }

1487 \cs_new_protected:Npn \@@_create_row_node_i:
1488 {

The \hbox:n (or \hbox) is mandatory.
1489 \hbox
1490 {
1491 \bool_if:NT \l_@@_code_before_bool
1492 {
1493 \vtop
1494 {
1495 \skip_vertical:N 0.5\arrayrulewidth
1496 \pgfsys@markposition
1497 { \@@_env: - row - \int_eval:n { \c@iRow + 1 } }
1498 \skip_vertical:N -0.5\arrayrulewidth
1499 }
1500 }
1501 \pgfpicture
1502 \pgfrememberpicturepositiononpagetrue
1503 \pgfcoordinate { \@@_env: - row - \int_eval:n { \c@iRow + 1 } }
1504 { \pgfpoint \c_zero_dim { - 0.5 \arrayrulewidth } }
1505 \str_if_empty:NF \l_@@_name_str
1506 {
1507 \pgfnodealias
1508 { \l_@@_name_str - row - \int_eval:n { \c@iRow + 1 } }
1509 { \@@_env: - row - \int_eval:n { \c@iRow + 1 } }
1510 }
1511 \endpgfpicture
1512 }
1513 }

1514 \cs_new_protected:Npn \@@_in_everycr:
1515 {
1516 \tbl_if_row_was_started:T { \UseTaggingSocket { tbl / row / end } }

44

1517 \tbl_update_cell_data_for_next_row:
1518 \int_gzero:N \c@jCol
1519 \bool_gset_false:N \g_@@_after_col_zero_bool
1520 \bool_if:NF \g_@@_row_of_col_done_bool
1521 {
1522 \@@_create_row_node:

We don’t draw now the rules of the key hlines (or hvlines) but we reserve the vertical space for
these rules (the rules will be drawn by pgf).

1523 \clist_if_empty:NF \l_@@_hlines_clist
1524 {
1525 \str_if_eq:eeF { \l_@@_hlines_clist } { all }
1526 {
1527 \clist_if_in:NeT
1528 \l_@@_hlines_clist
1529 { \int_eval:n { \c@iRow + 1 } }
1530 }
1531 {

The counter \c@iRow has the value −1 only if there is a “first row” and that we are before that “first
row”, i.e. just before the beginning of the array.

1532 \int_compare:nNnT { \c@iRow } > { -1 }
1533 {
1534 \int_compare:nNnF { \c@iRow } = { \l_@@_last_row_int }

1535 { \hrule height \arrayrulewidth width \c_zero_dim }
1536 }
1537 }
1538 }
1539 }
1540 }

When the key renew-dots is used, the following code will be executed.
1541 \cs_set_protected:Npn \@@_renew_dots:
1542 {
1543 \cs_set_eq:NN \ldots \@@_Ldots:
1544 \cs_set_eq:NN \cdots \@@_Cdots:
1545 \cs_set_eq:NN \vdots \@@_Vdots:
1546 \cs_set_eq:NN \ddots \@@_Ddots:
1547 \cs_set_eq:NN \iddots \@@_Iddots:
1548 \cs_set_eq:NN \dots \@@_Ldots:
1549 \cs_set_eq:NN \hdotsfor \@@_Hdotsfor:
1550 }

If booktabs is loaded, we have to patch the macro \@BTnormal which is a macro of booktabs. The
macro \@BTnormal draws an horizontal rule but it occurs after a vertical skip done by a low level TeX
command. When this macro \@BTnormal occurs, the row node has yet been inserted by nicematrix
before the vertical skip (and thus, at a wrong place). That why we decide to create a new row node
(for the same row). We patch the macro \@BTnormal to create this row node. This new row node will
overwrite the previous definition of that row node and we have managed to avoid the error messages
of that redefinition 5.

1551 \hook_gput_code:nnn { begindocument } { . }
1552 {
1553 \IfPackageLoadedTF { booktabs }
1554 {
1555 \cs_new_protected:Npn \@@_patch_booktabs:
1556 { \tl_put_left:Nn \@BTnormal \@@_create_row_node_i: }
1557 }
1558 { \cs_new_protected:Npn \@@_patch_booktabs: { } }

1559 }

5cf. \nicematrix@redefine@check@rerun

45

The box \@arstrutbox is a box constructed in the beginning of the environment {array}. The con-
struction of that box takes into account the current value of \arraystretch6 and \extrarowheight
(of array). That box is inserted (via \@arstrut) in the beginning of each row of the array. That’s
why we use the dimensions of that box to initialize the variables which will be the dimensions of the
potential first and last row of the environment. This initialization must be done after the creation of
\@arstrutbox and that’s why we do it in the \ialign.

1560 \cs_new_protected:Npn \@@_some_initialization:
1561 {
1562 \@@_everycr:
1563 \dim_gset:Nn \g_@@_dp_row_zero_dim { \box_dp:N \@arstrutbox }
1564 \dim_gset:Nn \g_@@_ht_row_zero_dim { \box_ht:N \@arstrutbox }
1565 \dim_gset_eq:NN \g_@@_ht_row_one_dim \g_@@_ht_row_zero_dim
1566 \dim_gzero:N \g_@@_dp_ante_last_row_dim
1567 \dim_gset:Nn \g_@@_ht_last_row_dim { \box_ht:N \@arstrutbox }
1568 \dim_gset:Nn \g_@@_dp_last_row_dim { \box_dp:N \@arstrutbox }
1569 }

\@@_pre_array_after_CodeBefore: will be executed in \@@_pre_array: after the execution
of the \CodeBefore. It contains all the code before the beginning of the construction of
\l_@@_the_array_box.

1570 \cs_new_protected:Npn \@@_pre_array_after_CodeBefore:
1571 {

The value of \g_@@_pos_of_blocks_seq has been written on the aux file and loaded before the
(potential) execution of the \CodeBefore.
Now, we reinitialize that variable with the content of \g_@@_future_pos_of_blocks_seq because
the mains blocks will be added in \g_@@_pos_of_blocks_seq during the construction of the array.

1572 \seq_gclear:N \g_@@_pos_of_blocks_seq

Idem for other sequences written on the aux file.
1573 \seq_gclear_new:N \g_@@_multicolumn_cells_seq
1574 \seq_gclear_new:N \g_@@_multicolumn_sizes_seq

The command \create_row_node: will create a row-node (and not a row of nodes!). However, at the
end of the array we construct a “false row” (for the col-nodes) and it interferes with the construction
of the last row-node of the array. We don’t want to create such row-node twice (to avaid warnings
or, maybe, errors). That’s why the command \@@_create_row_node: will use the following counter
to avoid such construction.

1575 \int_gset:Nn \g_@@_last_row_node_int { -2 }

The value −2 is important.

The total weight of the letters X in the preamble of the array.
1576 \fp_gzero:N \g_@@_total_X_weight_fp
1577 \bool_gset_false:N \g_@@_V_of_X_bool

1578 \@@_expand_clist_hvlines:NN \l_@@_hlines_clist \c@iRow
1579 \@@_expand_clist_hvlines:NN \l_@@_vlines_clist \c@jCol

1580 \@@_patch_booktabs:
1581 \box_clear_new:N \l_@@_cell_box
1582 \normalbaselines

If the option small is used, we have to do some tuning. In particular, we change the value of
\arraystretch (this parameter is used in the construction of \@arstrutbox in the beginning of
{array}).

1583 \bool_if:NT \l_@@_small_bool
1584 {

6The option small of nicematrix changes (among others) the value of \arraystretch. This is done, of course, before
the call of {array}.

46

1585 \def \arraystretch { 0.47 }
1586 \dim_set:Nn \arraycolsep { 1.45 pt }

By default, \@@_tuning_key_small: is no-op.
1587 \cs_set_eq:NN \@@_tuning_key_small: \scriptstyle
1588 }

The boolean \g_@@_create_cell_nodes_bool corresponds to the key create-cell-nodes of the
keyword \CodeBefore. When that key is used the “cell nodes” will be created before the \CodeBefore
but, of course, they are always available in the main tabular and after!

1589 \bool_if:NT \g_@@_create_cell_nodes_bool
1590 {
1591 \tl_put_right:Nn \@@_begin_of_row:
1592 {
1593 \pgfsys@markposition
1594 { \@@_env: - row - \int_use:N \c@iRow - base }
1595 }
1596 \socket_assign_plug:nn { nicematrix / create-cell-nodes } { active }
1597 }

The environment {array} uses internally the command \ar@ialign. We change that command for
several reasons. In particular, \ar@ialign sets \everycr to { } and we need to change the value of
\everycr.

1598 \bool_if:NF \c_@@_revtex_bool
1599 {
1600 \def \ar@ialign
1601 {
1602 \tbl_init_cell_data_for_table:
1603 \@@_some_initialization:
1604 \dim_zero:N \tabskip

After its first use, the definition of \ar@ialign will revert automatically to its default definition.
With this programmation, we will have, in the cells of the array, a clean version of \ar@ialign. We
use \cs_set_eq:Nc instead of \cs_set_eq:NN in order to avoid a message when explcheck is used
on nicematrix.sty.

1605 \cs_set_eq:Nc \ar@ialign { @@_old_ar@ialign: }
1606 \halign
1607 }
1608 }

It seems that there is a problem when nicematrix is used with in revtex4-2 with the package colortbl
loaded. The following code prevent that problem but it does not treat the actual problem! It’s only
a patch ad hoc.
That patch has been added in version 7.0x, 2024-11-27 (question by mail of Tamra Nebabu).

1609 \bool_if:NT \c_@@_revtex_bool
1610 {
1611 \IfPackageLoadedT { colortbl }
1612 { \cs_set_protected:Npn \CT@setup { } }
1613 }

We keep in memory the old versions or \ldots, \cdots, etc. only because we use them inside
\phantom commands in order that the new commands \Ldots, \Cdots, etc. give the same spacing
(except when the option nullify-dots is used).

1614 \cs_set_eq:NN \@@_old_ldots: \ldots
1615 \cs_set_eq:NN \@@_old_cdots: \cdots
1616 \cs_set_eq:NN \@@_old_vdots: \vdots
1617 \cs_set_eq:NN \@@_old_ddots: \ddots
1618 \cs_set_eq:NN \@@_old_iddots: \iddots
1619 \bool_if:NTF \l_@@_standard_cline_bool
1620 { \cs_set_eq:NN \cline \@@_standard_cline: }
1621 { \cs_set_eq:NN \cline \@@_cline: }
1622 \cs_set_eq:NN \Ldots \@@_Ldots:

47

1623 \cs_set_eq:NN \Cdots \@@_Cdots:
1624 \cs_set_eq:NN \Vdots \@@_Vdots:
1625 \cs_set_eq:NN \Ddots \@@_Ddots:
1626 \cs_set_eq:NN \Iddots \@@_Iddots:
1627 \cs_set_eq:NN \Hline \@@_Hline:
1628 \cs_set_eq:NN \Hspace \@@_Hspace:
1629 \cs_set_eq:NN \Hdotsfor \@@_Hdotsfor:
1630 \cs_set_eq:NN \Vdotsfor \@@_Vdotsfor:
1631 \cs_set_eq:NN \Block \@@_Block:
1632 \cs_set_eq:NN \rotate \@@_rotate:
1633 \cs_set_eq:NN \OnlyMainNiceMatrix \@@_OnlyMainNiceMatrix:n
1634 \cs_set_eq:NN \dotfill \@@_dotfill:
1635 \cs_set_eq:NN \CodeAfter \@@_CodeAfter:
1636 \cs_if_free:NT \Body { \cs_set_eq:NN \Body \@@_Body: }
1637 \cs_set_eq:NN \diagbox \@@_diagbox:nn
1638 \cs_set_eq:NN \NotEmpty \@@_NotEmpty:
1639 \cs_set_eq:NN \TopRule \@@_TopRule
1640 \cs_set_eq:NN \MidRule \@@_MidRule
1641 \cs_set_eq:NN \BottomRule \@@_BottomRule
1642 \cs_set_eq:NN \RowStyle \@@_RowStyle:n
1643 \cs_set_eq:NN \Hbrace \@@_Hbrace
1644 \cs_set_eq:NN \Vbrace \@@_Vbrace
1645 \seq_map_inline:Nn \l_@@_custom_line_commands_seq
1646 { \cs_set_eq:cc { ##1 } { nicematrix - ##1 } }
1647 \cs_set_eq:NN \cellcolor \@@_cellcolor_tabular
1648 \cs_set_eq:NN \rowcolor \@@_rowcolor_tabular
1649 \cs_set_eq:NN \rowcolors \@@_rowcolors_tabular
1650 \cs_set_eq:NN \rowlistcolors \@@_rowlistcolors_tabular
1651 \int_compare:nNnT { \l_@@_first_row_int } > { \c_zero_int }
1652 { \cs_set_eq:NN \@@_tuning_first_row: \prg_do_nothing: }
1653 \int_compare:nNnT { \l_@@_last_row_int } < { \c_zero_int }
1654 { \cs_set_eq:NN \@@_tuning_last_row: \prg_do_nothing: }
1655 \bool_if:NT \l_@@_renew_dots_bool { \@@_renew_dots: }

We redefine \multicolumn and, since we want \multicolumn to be available in the potential envi-
ronments {tabular} nested in the environments of nicematrix, we patch {tabular} to go back to the
original definition. A \hook_gremove_code:nn will be put in \@@_after_array:.

1656 \cs_set_eq:NN \multicolumn \@@_multicolumn:nnn
1657 \hook_gput_code:nnn { env / tabular / begin } { nicematrix }
1658 { \cs_set_eq:NN \multicolumn \@@_old_multicolumn: }
1659 \@@_revert_colortbl:

If there is one or several commands \tabularnote in the caption specified by the key caption and
if that caption has to be composed above the tabular, we have now that information because it has
been written in the aux file at a previous run. We use that information to start counting the tabular
notes in the main array at the right value (we remember that the caption will be composed after the
array!).

1660 \tl_if_exist:NT \l_@@_note_in_caption_tl
1661 {
1662 \tl_if_empty:NF \l_@@_note_in_caption_tl
1663 {
1664 \int_gset:Nn \g_@@_notes_caption_int { \l_@@_note_in_caption_tl }
1665 \int_gset:Nn \c@tabularnote { \l_@@_note_in_caption_tl }
1666 }
1667 }

The sequence \g_@@_multicolumn_cells_seq will contain the list of the cells of the array where a
command \multicolumn{n}{...}{...} with n > 1 is issued. In \g_@@_multicolumn_sizes_seq,
the “sizes” (that is to say the values of n) correspondent will be stored. These lists will be used for
the creation of the “medium nodes” (if they are created).

1668 \seq_gclear:N \g_@@_multicolumn_cells_seq
1669 \seq_gclear:N \g_@@_multicolumn_sizes_seq

48

The counter \c@iRow will be used to count the rows of the array (its incrementation will be in the
first cell of the row).

1670 \int_gset:Nn \c@iRow { \l_@@_first_row_int - 1 }

At the end of the environment {array}, \c@iRow will be the total number de rows.
\g_@@_row_total_int will be the number of rows excepted the last row (if \l_@@_last_row_bool
has been raised with the option last-row).

1671 \int_gzero:N \g_@@_row_total_int

The counter \c@jCol will be used to count the columns of the array. Since we want to know the total
number of columns of the matrix, we also create a counter \g_@@_col_total_int. These counters
are updated in the command \@@_cell_begin: executed at the beginning of each cell.

1672 \int_gzero:N \g_@@_col_total_int

1673 \cs_set_eq:NN \@ifnextchar \new@ifnextchar

1674 \bool_gset_false:N \g_@@_last_col_found_bool

During the construction of the array, the instructions \Cdots, \Ldots, etc. will be written in token
lists \g_@@_Cdots_lines_tl, etc. which will be executed after the construction of the array.

1675 \tl_gclear_new:N \g_@@_Cdots_lines_tl
1676 \tl_gclear_new:N \g_@@_Ldots_lines_tl
1677 \tl_gclear_new:N \g_@@_Vdots_lines_tl
1678 \tl_gclear_new:N \g_@@_Ddots_lines_tl
1679 \tl_gclear_new:N \g_@@_Iddots_lines_tl
1680 \tl_gclear_new:N \g_@@_HVdotsfor_lines_tl

1681 \tl_gclear:N \g_nicematrix_code_before_tl
1682 \tl_gclear:N \g_@@_pre_code_before_tl

We compute the width of both delimiters. We remind that, when the environment {NiceArray} is
used, it’s possible to specify the delimiters in the preamble (eg [ccc]).

1683 \dim_zero_new:N \l_@@_left_delim_dim
1684 \dim_zero_new:N \l_@@_right_delim_dim
1685 \bool_if:NTF \g_@@_delims_bool
1686 {

The command \bBigg@ is a command of amsmath.
1687 \hbox_set:Nn \l_tmpa_box { $ \bBigg@ 5 \g_@@_left_delim_tl $ }
1688 \dim_set:Nn \l_@@_left_delim_dim { \box_wd:N \l_tmpa_box }
1689 \hbox_set:Nn \l_tmpa_box { $ \bBigg@ 5 \g_@@_right_delim_tl $ }
1690 \dim_set:Nn \l_@@_right_delim_dim { \box_wd:N \l_tmpa_box }
1691 }
1692 {
1693 \dim_gset:Nn \l_@@_left_delim_dim
1694 { 2 \bool_if:NTF \l_@@_tabular_bool { \tabcolsep } { \arraycolsep } }
1695 \dim_gset_eq:NN \l_@@_right_delim_dim \l_@@_left_delim_dim
1696 }
1697 }

This is the end of \@@_pre_array_after_CodeBefore:.

The command \@@_pre_array: will be executed after analysis of the keys of the environment. If
will, in particular, read the potential informations written on the aux file.

1698 \cs_new_protected:Npn \@@_pre_array:
1699 {
1700 \cs_if_exist:NT \theiRow { \int_set_eq:NN \l_@@_old_iRow_int \c@iRow }
1701 \int_gzero_new:N \c@iRow
1702 \cs_if_exist:NT \thejCol { \int_set_eq:NN \l_@@_old_jCol_int \c@jCol }
1703 \int_gzero_new:N \c@jCol

49

We give values to the LaTeX counters iRow and jCol. We remind that before and after the
main array (in particular in the \CodeBefore and the \CodeAfter, they represent the numbers
of rows and columns of the array (without the potential last row and last column). The value
of \g_@@_row_total_int is the number of the last row (with potentially a last exterior row) and
\g_@@_col_total_int is the number of the last column (with potentially a last exterior column).

1704 \int_compare:nNnT \l_@@_last_row_int > 0
1705 { \int_set:Nn \c@iRow { \l_@@_last_row_int - 1 } }
1706 \int_compare:nNnT \l_@@_last_col_int > 0
1707 { \int_set:Nn \c@jCol { \l_@@_last_col_int - 1 } }
1708 \bool_if:NT \g_@@_aux_found_bool
1709 {
1710 \int_set:Nn \c@iRow { \seq_item:Nn \g_@@_size_seq { 2 } }
1711 \int_set:Nn \c@jCol { \seq_item:Nn \g_@@_size_seq { 5 } }
1712 \int_gset:Nn \g_@@_row_total_int { \seq_item:Nn \g_@@_size_seq { 3 } }
1713 \int_gset:Nn \g_@@_col_total_int { \seq_item:Nn \g_@@_size_seq { 6 } }
1714 }

We recall that \l_@@_last_row_int and \l_@@_last_col_int are not the numbers of the last row
and last column of the array. There are only the values of the keys last-row and last-col (maybe
the user has provided erroneous values). The meaning of that counters does not change during the
environment of nicematrix. There is only a slight adjustment: if the user have used one of those keys
without value, we provide now the right value as read on the aux file (of course, it’s possible only
after the first compilation).

1715 \int_compare:nNnT { \l_@@_last_row_int } = { -1 }
1716 {
1717 \bool_set_true:N \l_@@_last_row_without_value_bool
1718 \bool_if:NT \g_@@_aux_found_bool
1719 { \int_set:Nn \l_@@_last_row_int { \seq_item:Nn \g_@@_size_seq { 3 } } }
1720 }
1721 \int_compare:nNnT { \l_@@_last_col_int } = { -1 }
1722 {
1723 \bool_if:NT \g_@@_aux_found_bool
1724 { \int_set:Nn \l_@@_last_col_int { \seq_item:Nn \g_@@_size_seq { 6 } } }
1725 }

If there is an exterior row, we patch a command used in \@@_cell_begin: in order to keep track of
some dimensions needed to the construction of that “last row”.

1726 \int_compare:nNnT { \l_@@_last_row_int } > { -2 }
1727 {
1728 \tl_put_right:Nn \@@_update_for_first_and_last_row:
1729 {
1730 \dim_compare:nNnT { \g_@@_ht_last_row_dim } < { \box_ht:N \l_@@_cell_box }
1731 { \dim_gset:Nn \g_@@_ht_last_row_dim { \box_ht:N \l_@@_cell_box } }
1732 \dim_compare:nNnT { \g_@@_dp_last_row_dim } < { \box_dp:N \l_@@_cell_box }
1733 { \dim_gset:Nn \g_@@_dp_last_row_dim { \box_dp:N \l_@@_cell_box } }
1734 }
1735 }

1736 \seq_gclear:N \g_@@_cols_vlism_seq
1737 \seq_gclear:N \g_@@_submatrix_seq

Now the \CodeBefore.
1738 \bool_if:NT \l_@@_code_before_bool { \@@_exec_code_before: }

The code in \@@_pre_array_after_CodeBefore: is used only here.
1739 \@@_pre_array_after_CodeBefore:

50

Here is the beginning of the box which will contain the array. The \hbox_set_end: corresponding
to this \hbox_set:Nw will be in the second part of the environment (and the closing $ also).

1740 \hbox_set:Nw \l_@@_the_array_box

1741 \skip_horizontal:N \l_@@_left_margin_dim
1742 \skip_horizontal:N \l_@@_extra_left_margin_dim
1743 \UseTaggingSocket { tbl / hmode / begin }

The following code is a workaround to specify to the tagging system that the following code is fake
math (it raises \l__math_fakemath_bool in recent versions of LaTeX).

1744 \m@th
1745 $ % $
1746 \bool_if:NTF \l_@@_light_syntax_bool
1747 { \use:c { @@-light-syntax } }
1748 { \use:c { @@-normal-syntax } }
1749 }

The following command \@@_CodeBefore_Body:w will be used when the keyword \CodeBefore is
present at the beginning of the environment.

1750 \cs_new_protected_nopar:Npn \@@_CodeBefore_Body:w #1 \Body
1751 {
1752 \tl_set:Nn \l_tmpa_tl { #1 }
1753 \int_compare:nNnT { \char_value_catcode:n { 60 } } = { 13 }
1754 { \@@_rescan_for_spanish:N \l_tmpa_tl }
1755 \tl_gput_left:No \g_@@_pre_code_before_tl \l_tmpa_tl
1756 \bool_set_true:N \l_@@_code_before_bool

We go on with \@@_pre_array: which will (among other) execute the \CodeBefore (specified in
the key code-before or after the keyword \CodeBefore). By definition, the \CodeBefore must be
executed before the body of the array...

1757 \@@_pre_array:
1758 }

9 The \CodeBefore

1759 \cs_new_protected_nopar:Npn \@@_Body: { \@@_fatal:n { Body~alone } }

The following command will be executed if the \CodeBefore has to be actually executed (that
command will be used only once and is present alone only for legibility).

1760 \cs_new_protected:Npn \@@_pre_code_before:
1761 {

We will create all the col nodes and row nodes with the information written in the aux file. You use
the technique described in the page 1247 of pgfmanual.pdf, version 3.1.10.

1762 \pgfsys@markposition { \@@_env: - position }
1763 \pgfsys@getposition { \@@_env: - position } \@@_picture_position:
1764 \pgfpicture
1765 \pgf@relevantforpicturesizefalse

First, the recreation of the row nodes.
1766 \int_step_inline:nnn { \l_@@_first_row_int } { \g_@@_row_total_int + 1 }
1767 {
1768 \pgfsys@getposition { \@@_env: - row - ##1 } \@@_node_position:
1769 \pgfcoordinate { \@@_env: - row - ##1 }
1770 { \pgfpointdiff \@@_picture_position: \@@_node_position: }
1771 }

Now, the recreation of the col nodes.
1772 \int_step_inline:nnn { \l_@@_first_col_int } { \g_@@_col_total_int + 1 }
1773 {
1774 \pgfsys@getposition { \@@_env: - col - ##1 } \@@_node_position:

51

1775 \pgfcoordinate { \@@_env: - col - ##1 }
1776 { \pgfpointdiff \@@_picture_position: \@@_node_position: }
1777 }

Now, the creation of the cell nodes (i-j), and, maybe also the “medium nodes” and the “large
nodes”.

1778 \bool_if:NT \g_@@_create_cell_nodes_bool { \@@_recreate_cell_nodes: }
1779 \endpgfpicture

Now, you recreate the diagonal nodes by using the row nodes and the col nodes.
1780 \@@_create_diag_nodes:

Now, the recreation of the nodes of the blocks which have a name.
1781 \@@_create_blocks_nodes:

1782 \IfPackageLoadedT { tikz }
1783 {
1784 \tikzset
1785 {
1786 every~picture / .style =
1787 { overlay , name~prefix = \@@_env: - }
1788 }
1789 }
1790 \cs_set_eq:NN \cellcolor \@@_cellcolor
1791 \cs_set_eq:NN \rectanglecolor \@@_rectanglecolor
1792 \cs_set_eq:NN \roundedrectanglecolor \@@_roundedrectanglecolor
1793 \cs_set_eq:NN \rowcolor \@@_rowcolor
1794 \cs_set_eq:NN \rowcolors \@@_rowcolors
1795 \cs_set_eq:NN \rowlistcolors \@@_rowlistcolors
1796 \cs_set_eq:NN \arraycolor \@@_arraycolor
1797 \cs_set_eq:NN \columncolor \@@_columncolor
1798 \cs_set_eq:NN \chessboardcolors \@@_chessboardcolors
1799 \cs_set_eq:NN \SubMatrix \@@_SubMatrix_in_code_before
1800 \cs_set_eq:NN \ShowCellNames \@@_ShowCellNames
1801 \cs_set_eq:NN \TikzEveryCell \@@_TikzEveryCell
1802 \cs_set_eq:NN \EmptyColumn \@@_EmptyColumn:n
1803 \cs_set_eq:NN \EmptyRow \@@_EmptyRow:n
1804 }

1805 \cs_new_protected:Npn \@@_exec_code_before:
1806 {

We mark the cells which are in the (empty) corners because those cells must not be colored. We
should try to find a way to detected whether we actually have coloring instructions to execute...

1807 \clist_map_inline:Nn \l_@@_corners_cells_clist
1808 { \cs_set_nopar:cpn { @@ _ corner _ ##1 } { } }

1809 \seq_gclear_new:N \g_@@_colors_seq

The sequence \g_@@_colors_seq will always contain as first element the special color nocolor: when
that color is used, no color will be applied in the corresponding cells by the other coloring commands
of nicematrix.

1810 \@@_add_to_colors_seq:nn { { nocolor } } { }
1811 \bool_gset_false:N \g_@@_create_cell_nodes_bool
1812 \group_begin:

We compose the \CodeBefore in math mode in order to nullify the spaces put by the user between
instructions in the \CodeBefore.

1813 \if_mode_math:
1814 \@@_exec_code_before_i:
1815 \else:
1816 $ % $
1817 \@@_exec_code_before_i:
1818 $ % $
1819 \fi:
1820 \group_end:
1821 }

52

The following code is a security for the case the user has used babel with the option spanish: in that
case, the characters < (de code ascci 60) and > are activated and Tikz is not able to solve the problem
(even with the Tikz library babel).

1822 \cs_new_protected:Npn \@@_exec_code_before_i:
1823 {
1824 \int_compare:nNnT { \char_value_catcode:n { 60 } } = { 13 }
1825 { \@@_rescan_for_spanish:N \l_@@_code_before_tl }

Here is the \CodeBefore. The construction is a bit complicated because \g_@@_pre_code_before_tl
may begin with keys between square brackets. Moreover, after the analyze of those keys, we sometimes
have to decide to do not execute the rest of \g_@@_pre_code_before_tl (when it is asked for the
creation of cell nodes in the \CodeBefore). That’s why we use a \q_stop: it will be used to discard
the rest of \g_@@_pre_code_before_tl.

1826 \exp_last_unbraced:No \@@_CodeBefore_keys:
1827 \g_@@_pre_code_before_tl

Now, all the cells which are specified to be colored by instructions in the \CodeBefore will actually
be colored. It’s a two-stages mechanism because we want to draw all the cells with the same color at
the same time to absolutely avoid thin white lines in some pdf viewers.

1828 \@@_actually_color:
1829 \l_@@_code_before_tl
1830 \q_stop
1831 }

1832 \keys_define:nn { nicematrix / CodeBefore }
1833 {
1834 create-cell-nodes .bool_gset:N = \g_@@_create_cell_nodes_bool ,
1835 create-cell-nodes .default:n = true ,
1836 sub-matrix .code:n = \keys_set:nn { nicematrix / sub-matrix } { #1 } ,
1837 sub-matrix .value_required:n = true ,
1838 delimiters / color .tl_set:N = \l_@@_delimiters_color_tl ,
1839 delimiters / color .value_required:n = true ,
1840 unknown .code:n = \@@_error:n { Unknown~key~for~CodeBefore }
1841 }

1842 \NewDocumentCommand \@@_CodeBefore_keys: { O { } }
1843 {
1844 \keys_set:nn { nicematrix / CodeBefore } { #1 }
1845 \@@_CodeBefore:w
1846 }

We have extracted the options of the keyword \CodeBefore in order to see whether the key create-
cell-nodes has been used. Now, you can execute the rest of the \CodeBefore, excepted, of course,
if we are in the first compilation.

1847 \cs_new_protected:Npn \@@_CodeBefore:w #1 \q_stop
1848 {
1849 \bool_if:NTF \g_@@_aux_found_bool
1850 {
1851 \@@_pre_code_before:
1852 \legacy_if:nF { measuring@ } { #1 }
1853 }

If we are in the first compilation, you won’t really execute the \CodeBefore but we have to execute
some instructions of creation of PGF/TikZ pictures in order to have the correct aux file in the next
run (hence, we avoid to “lose” a run).

1854 {
1855 \pgfsys@markposition { \@@_env: - position }
1856 \pgfsys@getposition { \@@_env: - position } \@@_picture_position:
1857 \pgfpicture
1858 \pgf@relevantforpicturesizefalse
1859 \endpgfpicture

The following picture corresponds to \@@_create_diag_nodes:
1860 \pgfpicture
1861 \pgfrememberpicturepositiononpagetrue
1862 \endpgfpicture

53

The following picture corresponds to \@@_create_blocks_nodes:.
1863 \pgfpicture
1864 \pgf@relevantforpicturesizefalse
1865 \pgfrememberpicturepositiononpagetrue
1866 \endpgfpicture

The following picture corresponds \@@_actually_color:
1867 \pgfpicture
1868 \pgf@relevantforpicturesizefalse
1869 \endpgfpicture
1870 }
1871 }

By default, if the user uses the \CodeBefore, only the col nodes, row nodes and diag nodes are
available in that \CodeBefore. With the key create-cell-nodes, the cell nodes, that is to say the
nodes of the form (i-j) (but not the extra nodes) are also available because those nodes also are
recreated and that recreation is done by the following command.

1872 \cs_new_protected:Npn \@@_recreate_cell_nodes:
1873 {
1874 \int_step_inline:nnn { \l_@@_first_row_int } { \g_@@_row_total_int }
1875 {
1876 \pgfsys@getposition { \@@_env: - ##1 - base } \@@_node_position:
1877 \pgfcoordinate { \@@_env: - row - ##1 - base }
1878 { \pgfpointdiff \@@_picture_position: \@@_node_position: }
1879 \int_step_inline:nnn { \l_@@_first_col_int } { \g_@@_col_total_int }
1880 {
1881 \cs_if_exist:cT
1882 { pgf @ sys @ pdf @ mark @ pos @ \@@_env: - ##1 - ####1 - NW }
1883 {
1884 \pgfsys@getposition
1885 { \@@_env: - ##1 - ####1 - NW }
1886 \@@_node_position:
1887 \pgfsys@getposition
1888 { \@@_env: - ##1 - ####1 - SE }
1889 \@@_node_position_i:
1890 \@@_pgf_rect_node:nnn
1891 { \@@_env: - ##1 - ####1 }
1892 { \pgfpointdiff \@@_picture_position: \@@_node_position: }
1893 { \pgfpointdiff \@@_picture_position: \@@_node_position_i: }
1894 }
1895 }
1896 }
1897 \@@_create_extra_nodes:
1898 \@@_create_aliases_last:
1899 }

1900 \cs_new_protected:Npn \@@_create_aliases_last:
1901 {
1902 \int_step_inline:nn { \c@iRow }
1903 {
1904 \pgfnodealias
1905 { \@@_env: - ##1 - last }
1906 { \@@_env: - ##1 - \int_use:N \c@jCol }
1907 }
1908 \int_step_inline:nn { \c@jCol }
1909 {
1910 \pgfnodealias
1911 { \@@_env: - last - ##1 }
1912 { \@@_env: - \int_use:N \c@iRow - ##1 }
1913 }
1914 \pgfnodealias
1915 { \@@_env: - last - last }
1916 { \@@_env: - \int_use:N \c@iRow - \int_use:N \c@jCol }

54

1917 }

1918 \cs_new_protected:Npn \@@_create_blocks_nodes:
1919 {
1920 \pgfpicture
1921 \pgf@relevantforpicturesizefalse
1922 \pgfrememberpicturepositiononpagetrue
1923 \seq_map_inline:Nn \g_@@_pos_of_blocks_seq
1924 { \@@_create_one_block_node:nnnnn ##1 }
1925 \endpgfpicture
1926 }

The following command is called \@@_create_one_block_node:nnnnn but, in fact, it creates a node
only if the last argument (#5) which is the name of the block, is not empty.7

1927 \cs_new_protected:Npn \@@_create_one_block_node:nnnnn #1 #2 #3 #4 #5
1928 {
1929 \tl_if_empty:nF { #5 }
1930 {
1931 \@@_qpoint:n { col - #2 }
1932 \dim_set_eq:NN \l_tmpa_dim \pgf@x
1933 \@@_qpoint:n { #1 }
1934 \dim_set_eq:NN \l_tmpb_dim \pgf@y
1935 \@@_qpoint:n { col - \int_eval:n { #4 + 1 } }
1936 \dim_set_eq:NN \l_@@_tmpc_dim \pgf@x
1937 \@@_qpoint:n { \int_eval:n { #3 + 1 } }
1938 \dim_set_eq:NN \l_@@_tmpd_dim \pgf@y
1939 \@@_pgf_rect_node:nnnnn
1940 { \@@_env: - #5 }
1941 { \dim_use:N \l_tmpa_dim }
1942 { \dim_use:N \l_tmpb_dim }
1943 { \dim_use:N \l_@@_tmpc_dim }
1944 { \dim_use:N \l_@@_tmpd_dim }
1945 }
1946 }

1947 \cs_new_protected:Npn \@@_patch_for_revtex:
1948 {
1949 \cs_set_eq:NN \@addamp \@addamp@LaTeX
1950 \cs_set_eq:NN \@array \@array@array
1951 \cs_set_eq:NN \@tabular \@tabular@array
1952 \cs_set:Npn \@tabarray { \@ifnextchar [{ \@array } { \@array [c] } }
1953 \cs_set_eq:NN \array \array@array
1954 \cs_set_eq:NN \endarray \endarray@array
1955 \cs_set:Npn \endtabular { \endarray $\egroup} % $
1956 \cs_set_eq:NN \@mkpream \@mkpream@array
1957 \cs_set_eq:NN \@classx \@classx@array
1958 \cs_set_eq:NN \insert@column \insert@column@array
1959 \cs_set_eq:NN \@arraycr \@arraycr@array
1960 \cs_set_eq:NN \@xarraycr \@xarraycr@array
1961 \cs_set_eq:NN \@xargarraycr \@xargarraycr@array
1962 }

10 The environment {NiceArrayWithDelims}

1963 \NewDocumentEnvironment { NiceArrayWithDelims }
1964 { m m O { } m ! O { } t \CodeBefore }
1965 {

7Moreover, there is also in the list \g_@@_pos_of_blocks_seq the positions of the dotted lines (created by \Cdots,
etc.) and, for these entries, there is, of course, no name (the fifth component is empty).

55

1966 \bool_if:NT \c_@@_revtex_bool { \@@_patch_for_revtex: }

1967 \@@_provide_pgfsyspdfmark:
1968 \bool_if:NT \g_@@_footnote_bool { \savenotes }

The aim of the following \bgroup (the corresponding \egroup is, of course, at the end of the envi-
ronment) is to be able to put an exposant to a matrix in a mathematical formula.

1969 \bgroup

1970 \tl_gset:Nn \g_@@_left_delim_tl { #1 }
1971 \tl_gset:Nn \g_@@_right_delim_tl { #2 }
1972 \tl_gset:Nn \g_@@_user_preamble_tl { #4 }
1973 \tl_if_empty:NT \g_@@_user_preamble_tl { \@@_fatal:n { empty~preamble } }

1974 \int_gzero:N \g_@@_block_box_int
1975 \dim_gzero:N \g_@@_width_last_col_dim
1976 \dim_gzero:N \g_@@_width_first_col_dim
1977 \bool_gset_false:N \g_@@_row_of_col_done_bool
1978 \str_if_empty:NT \g_@@_name_env_str
1979 { \str_gset:Nn \g_@@_name_env_str { NiceArrayWithDelims } }
1980 \bool_if:NTF \l_@@_tabular_bool
1981 { \mode_leave_vertical: }
1982 { \@@_test_if_math_mode: }
1983 \bool_if:NT \l_@@_in_env_bool { \@@_fatal:n { Yet~in~env } }
1984 \bool_set_true:N \l_@@_in_env_bool

The command \CT@arc@ contains the instruction of color for the rules of the array8. This command
is used by \CT@arc@ but we use it also for compatibility with colortbl. But we want also to be able
to use color for the rules of the array when colortbl is not loaded. That’s why we do the following
instruction which is in the patch of the beginning of arrays done by colortbl. Of course, we restore
the value of \CT@arc@ at the end of our environment.

1985 \cs_gset_eq:cN { @@_old_CT@arc@ } \CT@arc@

We deactivate Tikz externalization because we will use pgf pictures with the options overlay and
remember picture (or equivalent forms). We deactivate with \tikzexternaldisable and not with
\tikzset{external/export=false} which is not equivalent.

1986 \cs_if_exist:NT \tikz@library@external@loaded
1987 {
1988 \tikzexternaldisable
1989 \cs_if_exist:NT \ifstandalone
1990 { \tikzset { external / optimize = false } }
1991 }

We increment the counter \g_@@_env_int which counts the environments of the package.
1992 \int_gincr:N \g_@@_env_int
1993 \bool_if:NF \l_@@_block_auto_columns_width_bool
1994 { \dim_gzero_new:N \g_@@_max_cell_width_dim }

The sequence \g_@@_blocks_seq will contain the characteristics of the blocks (specified by \Block)
of the array. The sequence \g_@@_pos_of_blocks_seq will contain only the position of the blocks.

1995 \seq_gclear:N \g_@@_blocks_seq
1996 \seq_gclear:N \g_@@_pos_of_blocks_seq

In fact, the sequence \g_@@_pos_of_blocks_seq will also contain the positions of the cells with a
\diagbox and the \multicolumn.

1997 \seq_gclear:N \g_@@_pos_of_stroken_blocks_seq
1998 \seq_gclear:N \g_@@_pos_of_xdots_seq
1999 \tl_gclear_new:N \g_@@_code_before_tl
2000 \tl_gclear:N \g_@@_row_style_tl

We load all the information written in the aux file during previous compilations corresponding to the
current environment.

8e.g. \color[rgb]{0.5,0.5,0}

56

2001 \tl_if_exist:cTF { g_@@ _ \int_use:N \g_@@_env_int _ tl }
2002 {
2003 \bool_gset_true:N \g_@@_aux_found_bool
2004 \use:c { g_@@ _ \int_use:N \g_@@_env_int _ tl }
2005 }
2006 { \bool_gset_false:N \g_@@_aux_found_bool }

Now, we prepare the token list for the instructions that we will have to write on the aux file at the
end of the environment.

2007 \tl_gclear:N \g_@@_aux_tl

2008 \tl_if_empty:NF \g_@@_code_before_tl
2009 {
2010 \bool_set_true:N \l_@@_code_before_bool
2011 \tl_put_right:No \l_@@_code_before_tl \g_@@_code_before_tl
2012 }
2013 \tl_if_empty:NF \g_@@_pre_code_before_tl
2014 { \bool_set_true:N \l_@@_code_before_bool }

The set of keys is not exactly the same for {NiceArray} and for the variants of {NiceArray}
({pNiceArray}, {bNiceArray}, etc.) because, for {NiceArray}, we have the options t, c, b and
baseline.

2015 \bool_if:NTF \g_@@_delims_bool
2016 { \keys_set:nn { nicematrix / pNiceArray } }
2017 { \keys_set:nn { nicematrix / NiceArray } }
2018 { #3 , #5 }

2019 \@@_set_CTarc:o \l_@@_rules_color_tl % noqa: w302

The argument #6 is the last argument of {NiceArrayWithDelims}. With that argument of type
“t \CodeBefore”, we test whether there is the keyword \CodeBefore at the beginning of the body
of the environment. If that keyword is present, we have now to extract all the content between
that keyword \CodeBefore and the (other) keyword \Body. It’s the job that will do the command
\@@_CodeBefore_Body:w. After that job, the command \@@_CodeBefore_Body:w will go on with
\@@_pre_array:.

2020 \bool_if:nTF { #6 } { \@@_CodeBefore_Body:w } { \@@_pre_array: }
2021 }

Now, the second part of the environment {NiceArrayWithDelims}.
2022 {
2023 \bool_if:NTF \l_@@_light_syntax_bool
2024 { \use:c { end @@-light-syntax } }
2025 { \use:c { end @@-normal-syntax } }
2026 $ % $
2027 \skip_horizontal:N \l_@@_right_margin_dim
2028 \skip_horizontal:N \l_@@_extra_right_margin_dim
2029 \hbox_set_end:
2030 \UseTaggingSocket { tbl / hmode / end }

End of the construction of the array (in the box \l_@@_the_array_box).

If the user has used the key width without any column X, we raise an error.
2031 \bool_if:NT \l_@@_width_used_bool
2032 {
2033 \fp_compare:nNnT { \g_@@_total_X_weight_fp } = { \c_zero_fp }
2034 { \@@_error_or_warning:n { width~without~X~columns } }
2035 }

Now, if there is at least one X-column in the environment, we compute the width that those columns
will have (in the next compilation). In fact, l_@@_X_columns_dim will be the width of a column of
weight 1.0. For a X-column of weight x, the width will be \l_@@_X_columns_dim multiplied by x.

2036 \fp_compare:nNnT { \g_@@_total_X_weight_fp } > { \c_zero_fp }
2037 { \@@_compute_width_X: }

57

It the user has used the key last-row with a value, we control that the given value is correct (since
we have just constructed the array, we know the actual number of rows of the array).

2038 \int_compare:nNnT { \l_@@_last_row_int } > { -2 }
2039 {
2040 \bool_if:NF \l_@@_last_row_without_value_bool
2041 {
2042 \int_compare:nNnF { \l_@@_last_row_int } = { \c@iRow }
2043 {
2044 \@@_error:n { Wrong~last~row }
2045 \int_set_eq:NN \l_@@_last_row_int \c@iRow
2046 }
2047 }
2048 }

Now, the definition of \c@jCol and \g_@@_col_total_int changes: \c@jCol will be the number of
columns without the “last column”; \g_@@_col_total_int will be the number of columns with this
“last column”.9

2049 \int_gset_eq:NN \c@jCol \g_@@_col_total_int
2050 \bool_if:NTF \g_@@_last_col_found_bool
2051 { \int_gdecr:N \c@jCol }
2052 {
2053 \int_compare:nNnT { \l_@@_last_col_int } > { -1 }
2054 { \@@_error:n { last~col~not~used } }
2055 }

We fix also the value of \c@iRow and \g_@@_row_total_int with the same principle.
2056 \int_gset_eq:NN \g_@@_row_total_int \c@iRow
2057 \int_compare:nNnT { \l_@@_last_row_int } > { -1 }
2058 { \int_gdecr:N \c@iRow }

Now, we begin the real construction in the output flow of TeX. First, we take into account
a potential “first column” (we remind that this “first column” has been constructed in an overlapping
position and that we have computed its width in \g_@@_width_first_col_dim: see p. 93).

2059 \int_if_zero:nT { \l_@@_first_col_int }
2060 { \skip_horizontal:N \g_@@_width_first_col_dim }

The construction of the real box is different whether we have delimiters to put.
2061 \bool_if:nTF { ! \g_@@_delims_bool }
2062 {
2063 \str_if_eq:eeTF { \l_@@_baseline_tl } { c }
2064 { \@@_use_arraybox_with_notes_c: }
2065 {
2066 \str_if_eq:eeTF { \l_@@_baseline_tl } { b }
2067 { \@@_use_arraybox_with_notes_b: }
2068 { \@@_use_arraybox_with_notes: }
2069 }
2070 }

Now, in the case of an environment with delimiters. We compute \l_tmpa_dim which is the total
height of the “first row” above the array (when the key first-row is used).

2071 {
2072 \int_if_zero:nTF { \l_@@_first_row_int }
2073 {
2074 \dim_set_eq:NN \l_tmpa_dim \g_@@_dp_row_zero_dim
2075 \dim_add:Nn \l_tmpa_dim \g_@@_ht_row_zero_dim
2076 }
2077 { \dim_zero:N \l_tmpa_dim }

We compute \l_tmpb_dim which is the total height of the “last row” below the array (when the key
last-row is used). A value of −2 for \l_@@_last_row_int means that there is no “last row”.10

2078 \int_compare:nNnTF { \l_@@_last_row_int } > { -2 }

9We remind that the potential “first column” (exterior) has the number 0.
10A value of −1 for \l_@@_last_row_int means that there is a “last row” but the the user have not set the value

with the option last row (and we are in the first compilation).

58

2079 {
2080 \dim_set_eq:NN \l_tmpb_dim \g_@@_ht_last_row_dim
2081 \dim_add:Nn \l_tmpb_dim \g_@@_dp_last_row_dim
2082 }
2083 { \dim_zero:N \l_tmpb_dim }

2084 \hbox_set:Nn \l_tmpa_box
2085 {
2086 \m@th
2087 $ % $
2088 \@@_color:o \l_@@_delimiters_color_tl
2089 \exp_after:wN \left \g_@@_left_delim_tl
2090 \vcenter
2091 {

We take into account the “first row” (we have previously computed its total height in \l_tmpa_dim).
The \hbox:n (or \hbox) is necessary here.

2092 \skip_vertical:n { - \l_tmpa_dim - \arrayrulewidth }
2093 \hbox
2094 {
2095 \bool_if:NTF \l_@@_tabular_bool
2096 { \skip_horizontal:n { - \tabcolsep } }
2097 { \skip_horizontal:n { - \arraycolsep } }
2098 \@@_use_arraybox_with_notes_c:
2099 \bool_if:NTF \l_@@_tabular_bool
2100 { \skip_horizontal:n { - \tabcolsep } }
2101 { \skip_horizontal:n { - \arraycolsep } }
2102 }

We take into account the “last row” (we have previously computed its total height in \l_tmpb_dim).
2103 \skip_vertical:n { - \l_tmpb_dim + \arrayrulewidth }
2104 }
2105 \exp_after:wN \right \g_@@_right_delim_tl
2106 $ % $
2107 }

Now, the box \l_tmpa_box is created with the correct delimiters.
We will put the box in the TeX flow. However, we have a small work to do when the option
delimiters/max-width is used.

2108 \bool_if:NTF \l_@@_delimiters_max_width_bool
2109 {
2110 \@@_put_box_in_flow_bis:nn
2111 { \g_@@_left_delim_tl }
2112 { \g_@@_right_delim_tl }
2113 }
2114 \@@_put_box_in_flow:
2115 }

We take into account a potential “last column” (this “last column” has been constructed in an
overlapping position and we have computed its width in \g_@@_width_last_col_dim: see p. 94).

2116 \bool_if:NT \g_@@_last_col_found_bool
2117 { \skip_horizontal:N \g_@@_width_last_col_dim }
2118 \bool_if:NT \l_@@_preamble_bool
2119 {
2120 \int_compare:nNnT { \c@jCol } < { \g_@@_static_num_of_col_int }
2121 { \@@_err_columns_not_used: }
2122 }
2123 \@@_after_array:

The aim of the following \egroup (the corresponding \bgroup is, of course, at the beginning of the
environment) is to be able to put an exposant to a matrix in a mathematical formula.

2124 \egroup

We write on the aux file all the information corresponding to the current environment.
2125 \iow_now:Nn \@mainaux { \ExplSyntaxOn }
2126 \iow_now:Nn \@mainaux { \char_set_catcode_space:n { 32 } }

59

2127 \iow_now:Ne \@mainaux
2128 {
2129 \tl_gclear_new:c { g_@@_ \int_use:N \g_@@_env_int _ tl }
2130 \tl_gset:cn { g_@@_ \int_use:N \g_@@_env_int _ tl }
2131 { \exp_not:o \g_@@_aux_tl }
2132 }
2133 \iow_now:Nn \@mainaux { \ExplSyntaxOff }

2134 \bool_if:NT \g_@@_footnote_bool { \endsavenotes }
2135 }

This is the end of the environment {NiceArrayWithDelims}.

2136 \cs_new_protected:Npn \@@_err_columns_not_used:
2137 {
2138 \@@_warning:n { columns~not~used }
2139 \cs_gset:Npn \@@_err_columns_not_used: { }
2140 }

The following command will be used only once. We have written that command for legibility. If there
is at least one X-column in the environment, we compute the width that those columns will have (in
the next compilation). In fact, l_@@_X_columns_dim will be the width of a column of weight 1.0.
For a X-column of weight x, the width will be \l_@@_X_columns_dim multiplied by x.

2141 \cs_new_protected:Npn \@@_compute_width_X:
2142 {
2143 \tl_gput_right:Ne \g_@@_aux_tl
2144 {
2145 \bool_set_true:N \l_@@_X_columns_aux_bool
2146 \dim_set:Nn \l_@@_X_columns_dim
2147 {

The flag g_@@_V_of_X_bool is raised when there is at least in the tabular a column of type X using
the key V. In that case, the width of the X column may be considered as correct even though the
tabular has not (of course) a width equal to \l_@@_width_dim

2148 \bool_lazy_and:nnTF
2149 { \g_@@_V_of_X_bool }
2150 { \l_@@_X_columns_aux_bool }
2151 { \dim_use:N \l_@@_X_columns_dim }
2152 {
2153 \dim_compare:nNnTF
2154 {
2155 \dim_abs:n
2156 { \l_@@_width_dim - \box_wd:N \l_@@_the_array_box }
2157 }
2158 <
2159 { 0.001 pt }
2160 { \dim_use:N \l_@@_X_columns_dim }
2161 {
2162 \dim_eval:n
2163 {
2164 \l_@@_X_columns_dim
2165 +
2166 \fp_to_dim:n
2167 {
2168 (
2169 \dim_eval:n
2170 { \l_@@_width_dim - \box_wd:N \l_@@_the_array_box }
2171)
2172 / \fp_use:N \g_@@_total_X_weight_fp
2173 }
2174 }
2175 }
2176 }

60

2177 }
2178 }
2179 }

11 Construction of the preamble of the array

The final user provides a preamble, but we must convert that preamble into a preamble which will
be given to {array} (of the package array).

The preamble given by the final user is stored in \g_@@_user_preamble_tl. The modified version
will be stored in \g_@@_array_preamble_tl.

2180 \cs_new_protected:Npn \@@_transform_preamble:
2181 {
2182 \@@_transform_preamble_i:
2183 \@@_transform_preamble_ii:
2184 }

2185 \cs_new_protected:Npn \@@_transform_preamble_i:
2186 {
2187 \int_gzero:N \c@jCol

The sequence \g_@@_cols_vlsim_seq will contain the numbers of the columns where you will to
have to draw vertical lines in the potential sub-matrices (hence the name vlism).

2188 \seq_gclear:N \g_@@_cols_vlism_seq

\g_tmpb_bool will be raised if you have a | at the end of the preamble provided by the final user.
2189 \bool_gset_false:N \g_tmpb_bool

The following sequence will store the arguments of the successive > in the preamble.
2190 \tl_gclear_new:N \g_@@_pre_cell_tl

The counter \l_tmpa_int will count the number of consecutive occurrences of the symbol |.
2191 \int_zero:N \l_tmpa_int
2192 \tl_gclear:N \g_@@_array_preamble_tl
2193 \str_if_eq:eeTF { \l_@@_vlines_clist } { all }
2194 {
2195 \tl_gset:Nn \g_@@_array_preamble_tl
2196 { ! { \skip_horizontal:N \arrayrulewidth } }
2197 }
2198 {
2199 \clist_if_in:NnT \l_@@_vlines_clist 1
2200 {
2201 \tl_gset:Nn \g_@@_array_preamble_tl
2202 { ! { \skip_horizontal:N \arrayrulewidth } }
2203 }
2204 }

Now, we actually make the preamble (which will be given to {array}). It will be stored in
\g_@@_array_preamble_tl.

2205 \exp_last_unbraced:No \@@_rec_preamble:n \g_@@_user_preamble_tl \s_stop
2206 \int_gset_eq:NN \g_@@_static_num_of_col_int \c@jCol

2207 \@@_replace_columncolor:
2208 }

2209 \cs_new_protected:Npn \@@_transform_preamble_ii:
2210 {

61

If there were delimiters at the beginning or at the end of the preamble, the environment {NiceArray}
is transformed into an environment {xNiceMatrix}.

2211 \tl_if_eq:NNTF \g_@@_left_delim_tl \c_@@_dot_tl
2212 {
2213 \tl_if_eq:NNF \g_@@_right_delim_tl \c_@@_dot_tl
2214 { \bool_gset_true:N \g_@@_delims_bool }
2215 }
2216 { \bool_gset_true:N \g_@@_delims_bool }

We want to remind whether there is a specifier | at the end of the preamble.
2217 \bool_if:NT \g_tmpb_bool { \bool_set_true:N \l_@@_bar_at_end_of_pream_bool }

We complete the preamble with the potential “exterior columns” (on both sides).
2218 \int_if_zero:nTF { \l_@@_first_col_int }
2219 { \tl_gput_left:No \g_@@_array_preamble_tl \c_@@_preamble_first_col_tl }
2220 {
2221 \bool_if:NF \g_@@_delims_bool
2222 {
2223 \bool_if:NF \l_@@_tabular_bool
2224 {
2225 \clist_if_empty:NT \l_@@_vlines_clist
2226 {
2227 \bool_if:NF \l_@@_exterior_arraycolsep_bool
2228 { \tl_gput_left:Nn \g_@@_array_preamble_tl { @ { } } }
2229 }
2230 }
2231 }
2232 }
2233 \int_compare:nNnTF { \l_@@_last_col_int } > { -1 }
2234 { \tl_gput_right:No \g_@@_array_preamble_tl \c_@@_preamble_last_col_tl }
2235 {
2236 \bool_if:NF \g_@@_delims_bool
2237 {
2238 \bool_if:NF \l_@@_tabular_bool
2239 {
2240 \clist_if_empty:NT \l_@@_vlines_clist
2241 {
2242 \bool_if:NF \l_@@_exterior_arraycolsep_bool
2243 { \tl_gput_right:Nn \g_@@_array_preamble_tl { @ { } } }
2244 }
2245 }
2246 }
2247 }

We try to give a good error message when the final user puts more columns than allowed by the
preamble of the array. The mechanism consists of an extra column. However, if tagging is in force,
that dummy extra column will be tagged (with <TD> tags) and that’s why we disable that mechanism
when tagging is in force.

2248 \tag_if_active:F
2249 {

Moreover, when {NiceTabular*} is used, the mechanism can’t be used for technical reasons. We test
that situation with \l_@@_tabular_width_dim.

2250 \dim_compare:nNnT { \l_@@_tabular_width_dim } = { \c_zero_dim }
2251 {
2252 \tl_gput_right:Nn \g_@@_array_preamble_tl
2253 { > { \@@_err_too_many_cols: } l }
2254 }
2255 }
2256 }

62

We have used to add a last column to raise a good error message when the user puts more columns
than allowed by its preamble. For technical reasons, it was not possible to do that in {NiceTabular*}
and that’s why we used to control that with the value of \l_@@_tabular_width_dim).

The preamble provided by the final user will be read by a finite automata. The following function
\@@_rec_preamble:n will read that preamble (usually letter by letter) in a recursive way (hence the
name of that function). in the preamble.

2257 \cs_new_protected:Npn \@@_rec_preamble:n #1
2258 {

For the majority of the letters, we will trigger the corresponding action by calling directly a function
in the main hashtable of TeX (thanks to the mechanism \csname...\endcsname. Be careful: all
these functions take in as first argument the letter (or token) itself.11

2259 \cs_if_exist:cTF { @@ _ \token_to_str:N #1 : }
2260 { \use:c { @@ _ \token_to_str:N #1 : } { #1 } }
2261 {

Now, the columns defined by \newcolumntype of array.
2262 \cs_if_exist:cTF { NC @ find @ #1 }
2263 {
2264 \tl_set_eq:Nc \l_tmpb_tl { NC @ rewrite @ #1 }
2265 \exp_last_unbraced:No \@@_rec_preamble:n \l_tmpb_tl
2266 }
2267 {
2268 \str_if_eq:nnTF { #1 } { S }
2269 { \@@_fatal:n { unknown~column~type~S } }
2270 { \@@_fatal:nn { unknown~column~type } { #1 } }
2271 }
2272 }
2273 }

For c, l and r
2274 \cs_new_protected:Npn \@@_c: #1
2275 {
2276 \tl_gput_right:No \g_@@_array_preamble_tl \g_@@_pre_cell_tl
2277 \tl_gclear:N \g_@@_pre_cell_tl
2278 \tl_gput_right:Nn \g_@@_array_preamble_tl
2279 { > \@@_cell_begin: c < \@@_cell_end: }

We increment the counter of columns and then we test for the presence of a <.
2280 \int_gincr:N \c@jCol
2281 \@@_rec_preamble_after_col:n
2282 }

2283 \cs_new_protected:Npn \@@_l: #1
2284 {
2285 \tl_gput_right:No \g_@@_array_preamble_tl \g_@@_pre_cell_tl
2286 \tl_gclear:N \g_@@_pre_cell_tl
2287 \tl_gput_right:Nn \g_@@_array_preamble_tl
2288 {
2289 > { \@@_cell_begin: \tl_set_eq:NN \l_@@_hpos_cell_tl \c_@@_l_tl }
2290 l
2291 < \@@_cell_end:
2292 }
2293 \int_gincr:N \c@jCol
2294 \@@_rec_preamble_after_col:n
2295 }

11We do that because it’s an easy way to insert the letter at some places in the code that we will add to
\g_@@_array_preamble_tl.

63

2296 \cs_new_protected:Npn \@@_r: #1
2297 {
2298 \tl_gput_right:No \g_@@_array_preamble_tl \g_@@_pre_cell_tl
2299 \tl_gclear:N \g_@@_pre_cell_tl
2300 \tl_gput_right:Nn \g_@@_array_preamble_tl
2301 {
2302 > { \@@_cell_begin: \tl_set_eq:NN \l_@@_hpos_cell_tl \c_@@_r_tl }
2303 r
2304 < \@@_cell_end:
2305 }
2306 \int_gincr:N \c@jCol
2307 \@@_rec_preamble_after_col:n
2308 }

For ! and @
2309 \cs_new_protected:cpn { @@ _ \token_to_str:N ! : } #1 #2
2310 {
2311 \tl_gput_right:Nn \g_@@_array_preamble_tl { #1 { #2 } }
2312 \@@_rec_preamble:n
2313 }
2314 \cs_set_eq:cc { @@ _ \token_to_str:N @ : } { @@ _ \token_to_str:N ! : }

For |
2315 \cs_new_protected:cpn { @@ _ | : } #1
2316 {

\l_tmpa_int is the number of successive occurrences of |
2317 \int_incr:N \l_tmpa_int
2318 \@@_make_preamble_i_i:n
2319 }

2320 \cs_new_protected:Npn \@@_make_preamble_i_i:n #1
2321 {

Here, we can’t use \str_if_eq:eeTF.
2322 \str_if_eq:nnTF { #1 } { | }
2323 { \use:c { @@ _ | : } | }
2324 { \@@_make_preamble_i_ii:nn { } #1 }
2325 }

The following constructions aims to allow cumulative blocks of options between square brackets such
as in |[color=blue][tikz=dashed].

2326 \cs_new_protected:Npn \@@_make_preamble_i_ii:nn #1 #2
2327 {
2328 \str_if_eq:nnTF { #2 } { [}
2329 { \@@_make_preamble_i_ii:nw { #1 } [}
2330 { \@@_make_preamble_i_iii:nn { #2 } { #1 } }
2331 }
2332 \cs_new_protected:Npn \@@_make_preamble_i_ii:nw #1 [#2]
2333 { \@@_make_preamble_i_ii:nn { #1 , #2 } }

2334 \cs_new_protected:Npn \@@_make_preamble_i_iii:nn #1 #2
2335 {
2336 \@@_compute_rule_width:n { multiplicity = \l_tmpa_int , #2 }
2337 \tl_gput_right:Ne \g_@@_array_preamble_tl
2338 {

Here, the command \dim_use:N is mandatory.
2339 \exp_not:N ! { \skip_horizontal:N \dim_use:N \l_@@_rule_width_dim }
2340 }
2341 \tl_gput_right:Ne \g_@@_pre_code_after_tl
2342 {
2343 \@@_vline:n
2344 {
2345 position = \int_eval:n { \c@jCol + 1 } ,

64

2346 multiplicity = \int_use:N \l_tmpa_int ,
2347 total-width = \dim_use:N \l_@@_rule_width_dim ,
2348 #2
2349 }

We don’t have provided value for start nor for end, which means that the rule will cover (potentially)
all the rows of the array.

2350 }
2351 \int_zero:N \l_tmpa_int
2352 \str_if_eq:nnT { #1 } { \s_stop } { \bool_gset_true:N \g_tmpb_bool }
2353 \@@_rec_preamble:n #1
2354 }

2355 \cs_new_protected:cpn { @@ _ > : } #1 #2
2356 {
2357 \tl_gput_right:Nn \g_@@_pre_cell_tl { > { #2 } }
2358 \@@_rec_preamble:n
2359 }

2360 \bool_new:N \l_@@_bar_at_end_of_pream_bool

The specifier p (and also the specifiers m, b, V and X) have an optional argument between square
brackets for a list of key-value pairs. Here are the corresponding keys.

2361 \keys_define:nn { nicematrix / p-column }
2362 {
2363 r .code:n = \str_set_eq:NN \l_@@_hpos_col_str \c_@@_r_str ,
2364 r .value_forbidden:n = true ,
2365 c .code:n = \str_set_eq:NN \l_@@_hpos_col_str \c_@@_c_str ,
2366 c .value_forbidden:n = true ,
2367 l .code:n = \str_set_eq:NN \l_@@_hpos_col_str \c_@@_l_str ,
2368 l .value_forbidden:n = true ,
2369 S .code:n = \str_set:Nn \l_@@_hpos_col_str { si } ,
2370 S .value_forbidden:n = true ,
2371 p .code:n = \str_set:Nn \l_@@_vpos_col_str { p } ,
2372 p .value_forbidden:n = true ,
2373 t .meta:n = p ,
2374 m .code:n = \str_set:Nn \l_@@_vpos_col_str { m } ,
2375 m .value_forbidden:n = true ,
2376 b .code:n = \str_set:Nn \l_@@_vpos_col_str { b } ,
2377 b .value_forbidden:n = true
2378 }

For p but also b and m.
2379 \cs_new_protected:Npn \@@_p: #1
2380 {
2381 \str_set:Nn \l_@@_vpos_col_str { #1 }

Now, you look for a potential character [after the letter of the specifier (for the options).
2382 \@@_make_preamble_ii_i:n
2383 }
2384 \cs_set_eq:NN \@@_b: \@@_p:
2385 \cs_set_eq:NN \@@_m: \@@_p:

2386 \cs_new_protected:Npn \@@_make_preamble_ii_i:n #1
2387 {
2388 \str_if_eq:nnTF { #1 } { [}
2389 { \@@_make_preamble_ii_ii:w [}
2390 { \@@_make_preamble_ii_ii:w [] { #1 } }
2391 }

2392 \cs_new_protected:Npn \@@_make_preamble_ii_ii:w [#1]
2393 { \@@_make_preamble_ii_iii:nn { #1 } }

65

#1 is the optional argument of the specifier (a list of key-value pairs).
#2 is the mandatory argument of the specifier: the width of the column.

2394 \cs_new_protected:Npn \@@_make_preamble_ii_iii:nn #1 #2
2395 {

The possible values of \l_@@_hpos_col_str are j (for justified which is the initial value), l, c, r, L,
C and R (when the user has used the corresponding key in the optional argument of the specifier).

2396 \str_set:Nn \l_@@_hpos_col_str { j }
2397 \@@_keys_p_column:n { #1 }

We apply setlength in order to allow a width of column of the form \widthof{Some words}.
\widthof is a command of the package calc (not loaded by nicematrix) which redefines the com-
mand \setlength. Of course, even if calc is not loaded, the following code will work with the
standard version of \setlength.

2398 \setlength { \l_tmpa_dim } { #2 }
2399 \@@_make_preamble_ii_iv:nnn { \dim_use:N \l_tmpa_dim } { minipage } { }
2400 }

2401 \cs_new_protected:Npn \@@_keys_p_column:n #1
2402 { \keys_set_known:nnN { nicematrix / p-column } { #1 } \l_tmpa_tl }

The first argument is the width of the column. The second is the type of environment: minipage or
varwidth. The third is some code added at the beginning of the cell.

2403 \cs_new_protected:Npn \@@_make_preamble_ii_iv:nnn #1 #2 #3
2404 {

Here, \expanded would probably be slightly faster than \use:e
2405 \use:e
2406 {
2407 \@@_make_preamble_ii_vi:nnnnnnnn
2408 { \str_if_eq:eeTF { \l_@@_vpos_col_str } { p } { t } { b } }
2409 { #1 }
2410 {

The parameter \l_@@_hpos_col_str (as \l_@@_vpos_col_str) exists only during the construction
of the preamble. During the composition of the array itself, you will have, in each cell, the parameter
\l_@@_hpos_cell_tl which will provide the horizontal alignment of the column to which belongs
the cell.

2411 \str_if_eq:eeTF { \l_@@_hpos_col_str } { j }
2412 { \tl_clear:N \exp_not:N \l_@@_hpos_cell_tl }
2413 {

Here, we use \def instead of \tl_set:Nn for efficiency only.
2414 \def \exp_not:N \l_@@_hpos_cell_tl
2415 { \str_lowercase:f { \l_@@_hpos_col_str } }
2416 }
2417 \IfPackageLoadedTF { ragged2e }
2418 {
2419 \str_case:on \l_@@_hpos_col_str
2420 {

The following \exp_not:N are mandatory.
2421 c { \exp_not:N \Centering }
2422 l { \exp_not:N \RaggedRight }
2423 r { \exp_not:N \RaggedLeft }
2424 }
2425 }
2426 {
2427 \str_case:on \l_@@_hpos_col_str
2428 {
2429 c { \exp_not:N \centering }
2430 l { \exp_not:N \raggedright }
2431 r { \exp_not:N \raggedleft }
2432 }

66

2433 }
2434 #3
2435 }
2436 { \str_if_eq:eeT { \l_@@_vpos_col_str } { m } \@@_center_cell_box: }
2437 { \str_if_eq:eeT { \l_@@_hpos_col_str } { si } \siunitx_cell_begin:w }
2438 { \str_if_eq:eeT { \l_@@_hpos_col_str } { si } \siunitx_cell_end: }
2439 { #2 }
2440 {
2441 \str_case:onF \l_@@_hpos_col_str
2442 {
2443 { j } { c }
2444 { si } { c }
2445 }

We use \str_lowercase:n to convert R to r, etc.
2446 { \str_lowercase:f \l_@@_hpos_col_str }
2447 }
2448 }

We increment the counter of columns, and then we test for the presence of a <.
2449 \int_gincr:N \c@jCol
2450 \@@_rec_preamble_after_col:n
2451 }

#1 is the optional argument of {minipage} (or {varwidth}): t or b. Indeed, for the columns of type
m, we use the value b here because there is a special post-action in order to center vertically the box
(see #4).
#2 is the width of the {minipage} (or {varwidth}), that is to say also the width of the column.
#3 is the coding for the horizontal position of the content of the cell (\centering, \raggedright,
\raggedleft or nothing). It’s also possible to put in that #3 some code to fix the value of
\l_@@_hpos_cell_tl which will be available in each cell of the column.
#4 is an extra-code which contains \@@_center_cell_box: (when the column is a m column) or
nothing (in the other cases).
#5 is a code put just before the c (or r or l: see #8).
#6 is a code put just after the c (or r or l: see #8).
#7 is the type of environment: minipage or varwidth.
#8 is the letter c or r or l which is the basic specifier of column which is used in fine.

2452 \cs_new_protected:Npn \@@_make_preamble_ii_vi:nnnnnnnn #1 #2 #3 #4 #5 #6 #7 #8
2453 {
2454 \str_if_eq:eeTF { \l_@@_hpos_col_str } { si }
2455 {
2456 \tl_gput_right:Nn \g_@@_array_preamble_tl
2457 { > \@@_test_if_empty_for_S: }
2458 }
2459 {
2460 \str_if_eq:eeTF { #7 } { varwidth }
2461 {
2462 \tl_gput_right:Nn \g_@@_array_preamble_tl
2463 { > \@@_test_if_empty_varwidth: }
2464 }
2465 { \tl_gput_right:Nn \g_@@_array_preamble_tl { > \@@_test_if_empty: } }
2466 }
2467 \tl_gput_right:No \g_@@_array_preamble_tl \g_@@_pre_cell_tl
2468 \tl_gclear:N \g_@@_pre_cell_tl
2469 \tl_gput_right:Nn \g_@@_array_preamble_tl
2470 {
2471 > {

The parameter \l_@@_col_width_dim, which is the width of the current column, will be available in
each cell of the column. It will be used by the mono-column blocks.

2472 \dim_set:Nn \l_@@_col_width_dim { #2 }
2473 \@@_cell_begin:

67

We use the form \minipage–\endminipage (\varwidth–\endvarwidth) for compatibility with collcell
(2023-10-31).

2474 \use:c { #7 } [#1] { #2 }

The following lines have been taken from array.sty.
2475 \everypar
2476 {
2477 \vrule height \box_ht:N \@arstrutbox width \c_zero_dim
2478 \everypar { }
2479 }

Now, the potential code for the horizontal position of the content of the cell (\centering,
\raggedright, \RaggedRight, etc.).

2480 #3

The following code is to allow something like \centering in \RowStyle.
2481 \g_@@_row_style_tl
2482 \arraybackslash
2483 #5
2484 }
2485 #8
2486 < {
2487 #6

The following line has been taken from array.sty.
2488 \@finalstrut \@arstrutbox
2489 \use:c { end #7 }

If the letter in the preamble is m, #4 will be equal to \@@_center_cell_box: (see just below).
2490 #4
2491 \@@_cell_end:
2492 }
2493 }
2494 }

The cell always begins with \ignorespaces with array and that’s why we retrieve that token.
2495 \cs_new_protected:Npn \@@_test_if_empty: \ignorespaces
2496 {

We open a special group with \group_align_safe_begin:. Thus, when \peek_meaning:NTF will
read the & (when the cell is empty), that lecture won’t trigger the end of the cell (since we are in a
lower group...). If the end of cell was trigerred, we would have other tokens in the TeX flow (and not
&).

2497 \group_align_safe_begin:
2498 \peek_meaning:NTF &
2499 { \@@_the_cell_is_empty: }
2500 {
2501 \peek_meaning:NTF \\
2502 { \@@_the_cell_is_empty: }
2503 {
2504 \peek_meaning:NTF \crcr
2505 \@@_the_cell_is_empty:
2506 \group_align_safe_end:
2507 }
2508 }
2509 }

A special version of the previous function for the columns of type V (of varwidth).
2510 \cs_new_protected:Npn \@@_test_if_empty_varwidth: \ignorespaces
2511 {
2512 \group_align_safe_begin:
2513 \peek_meaning:NTF &
2514 { \@@_the_cell_is_empty_varwidth: }
2515 {

68

2516 \peek_meaning:NTF \\
2517 { \@@_the_cell_is_empty_varwidth: }
2518 {
2519 \peek_meaning:NTF \crcr
2520 \@@_the_cell_is_empty_varwidth:
2521 \group_align_safe_end:
2522 }
2523 }
2524 }

2525 \cs_new_protected:Npn \@@_the_cell_is_empty:
2526 {
2527 \group_align_safe_end:
2528 \tl_gput_right:Nn \g_@@_cell_after_hook_tl
2529 {

Be careful: here, we can’t merely use \bool_gset_true: \g_@@_empty_cell_bool, in particular
because of the columns of type X.

2530 \box_set_wd:Nn \l_@@_cell_box \c_zero_dim

If all the cells of the column are empty, we still must have a column with the width required by the
column of type p (or b, or m).

2531 \skip_horizontal:N \l_@@_col_width_dim
2532 }
2533 }

2534 \cs_new_protected:Npn \@@_the_cell_is_empty_varwidth:
2535 {
2536 \group_align_safe_end:
2537 \tl_gput_right:Nn \g_@@_cell_after_hook_tl
2538 { \box_set_wd:Nn \l_@@_cell_box \c_zero_dim }
2539 }

2540 \cs_new_protected:Npn \@@_test_if_empty_for_S:
2541 {
2542 \peek_meaning:NT __siunitx_table_skip:n
2543 { \bool_gset_true:N \g_@@_empty_cell_bool }
2544 }

The following command will be used in m-columns in order to center vertically the box. In fact,
despite its name, the command does not always center the cell. Indeed, if there is only one row in
the cell, it should not be centered vertically. It’s not possible to know the number of rows of the
cell. However, we consider (as in array) that if the height of the cell is no more that the height of
\strutbox, there is only one row.

2545 \cs_new_protected:Npn \@@_center_cell_box:
2546 {

By putting instructions in \g_@@_cell_after_hook_tl, we require a post-action of the box
\l_@@_cell_box.

2547 \tl_gput_right:Nn \g_@@_cell_after_hook_tl
2548 {
2549 \dim_compare:nNnT
2550 { \box_ht:N \l_@@_cell_box }
2551 >

Previously, we had \@arstrutbox and not \strutbox in the following line but the code in array
has changed in v 2.5g and we follow the change (see array: Correctly identify single-line m-cells in
LaTeX News 36).

2552 { \box_ht:N \strutbox }
2553 {
2554 \hbox_set:Nn \l_@@_cell_box
2555 {
2556 \box_move_down:nn
2557 {
2558 (\box_ht:N \l_@@_cell_box - \box_ht:N \@arstrutbox

69

2559 + \baselineskip) / 2
2560 }
2561 { \box_use:N \l_@@_cell_box }
2562 }
2563 }
2564 }
2565 }

For V (similar to the V of varwidth).
2566 \cs_new_protected:Npn \@@_V: #1 #2
2567 {
2568 \str_if_eq:nnTF { #2 } { [}
2569 { \@@_make_preamble_V_i:w [}
2570 { \@@_make_preamble_V_i:w [] { #2 } }
2571 }
2572 \cs_new_protected:Npn \@@_make_preamble_V_i:w [#1]
2573 { \@@_make_preamble_V_ii:nn { #1 } }
2574 \cs_new_protected:Npn \@@_make_preamble_V_ii:nn #1 #2
2575 {
2576 \str_set:Nn \l_@@_vpos_col_str { p }
2577 \str_set:Nn \l_@@_hpos_col_str { j }
2578 \@@_keys_p_column:n { #1 }

We apply setlength in order to allow a width of column of the form \widthof{Some words}.
\widthof is a command of the package calc (not loaded by nicematrix) which redefines the com-
mand \setlength. Of course, even if calc is not loaded, the following code will work with the
standard version of \setlength.

2579 \setlength { \l_tmpa_dim } { #2 }
2580 \IfPackageLoadedTF { varwidth }
2581 { \@@_make_preamble_ii_iv:nnn { \dim_use:N \l_tmpa_dim } { varwidth } { } }
2582 {
2583 \@@_error_or_warning:n { varwidth~not~loaded }
2584 \@@_make_preamble_ii_iv:nnn { \dim_use:N \l_tmpa_dim } { minipage } { }
2585 }
2586 }

For w and W
2587 \cs_new_protected:Npn \@@_w: { \@@_make_preamble_w:nnnn { } }
2588 \cs_new_protected:Npn \@@_W: { \@@_make_preamble_w:nnnn { \@@_special_W: } }

#1 is a special argument: empty for w and equal to \@@_special_W: for W;
#2 is the type of column (w or W);
#3 is the type of horizontal alignment (c, l, r or s);
#4 is the width of the column.

2589 \cs_new_protected:Npn \@@_make_preamble_w:nnnn #1 #2 #3 #4
2590 {
2591 \str_if_eq:nnTF { #3 } { s }
2592 { \@@_make_preamble_w_i:nnnn { #1 } { #4 } }
2593 { \@@_make_preamble_w_ii:nnnn { #1 } { #2 } { #3 } { #4 } }
2594 }

First, the case of an horizontal alignment equal to s (for stretch).
#1 is a special argument: empty for w and equal to \@@_special_W: for W;
#2 is the width of the column.

2595 \cs_new_protected:Npn \@@_make_preamble_w_i:nnnn #1 #2
2596 {
2597 \tl_gput_right:No \g_@@_array_preamble_tl \g_@@_pre_cell_tl
2598 \tl_gclear:N \g_@@_pre_cell_tl
2599 \tl_gput_right:Nn \g_@@_array_preamble_tl
2600 {
2601 > {

70

We use \setlength in order to allow \widthof which is a command of calc (when loaded calc redefines
\setlength). Of course, even if calc is not loaded, the following code will work with the standard
version of \setlength.

2602 \setlength { \l_@@_col_width_dim } { #2 }
2603 \@@_cell_begin:
2604 \tl_set_eq:NN \l_@@_hpos_cell_tl \c_@@_c_tl
2605 }
2606 c
2607 < {
2608 \@@_cell_end_for_w_s:
2609 #1
2610 \@@_adjust_size_box:
2611 \box_use_drop:N \l_@@_cell_box
2612 }
2613 }
2614 \int_gincr:N \c@jCol
2615 \@@_rec_preamble_after_col:n
2616 }

Then, the most important version, for the horizontal alignments types of c, l and r (and not s).
2617 \cs_new_protected:Npn \@@_make_preamble_w_ii:nnnn #1 #2 #3 #4
2618 {
2619 \tl_gput_right:No \g_@@_array_preamble_tl \g_@@_pre_cell_tl
2620 \tl_gclear:N \g_@@_pre_cell_tl
2621 \tl_gput_right:Nn \g_@@_array_preamble_tl
2622 {
2623 > {

The parameter \l_@@_col_width_dim, which is the width of the current column, will be available in
each cell of the column. It will be used by the mono-column blocks.
We use \setlength in order to allow \widthof which is a command of calc (when loaded calc redefines
\setlength). Of course, even if calc is not loaded, the following code will work with the standard
version of \setlength.

2624 \setlength { \l_@@_col_width_dim } { #4 }
2625 \hbox_set:Nw \l_@@_cell_box
2626 \@@_cell_begin:
2627 \tl_set:Nn \l_@@_hpos_cell_tl { #3 }
2628 }
2629 c
2630 < {
2631 \@@_cell_end:
2632 \hbox_set_end:
2633 #1
2634 \@@_adjust_size_box:
2635 \makebox [#4] [#3] { \box_use_drop:N \l_@@_cell_box }
2636 }
2637 }

We increment the counter of columns and then we test for the presence of a <.
2638 \int_gincr:N \c@jCol
2639 \@@_rec_preamble_after_col:n
2640 }

2641 \cs_new_protected:Npn \@@_special_W:
2642 {
2643 \dim_compare:nNnT { \box_wd:N \l_@@_cell_box } > { \l_@@_col_width_dim }
2644 { \@@_warning:n { W~warning } }
2645 }

For S (of siunitx).
2646 \cs_new_protected:Npn \@@_S: #1 #2
2647 {

71

2648 \str_if_eq:nnTF { #2 } { [}
2649 { \@@_make_preamble_S:w [}
2650 { \@@_make_preamble_S:w [] { #2 } }
2651 }

2652 \cs_new_protected:Npn \@@_make_preamble_S:w [#1]
2653 { \@@_make_preamble_S_i:n { #1 } }

2654 \cs_new_protected:Npn \@@_make_preamble_S_i:n #1
2655 {
2656 \IfPackageLoadedF { siunitx } { \@@_fatal:n { siunitx~not~loaded } }
2657 \tl_gput_right:No \g_@@_array_preamble_tl \g_@@_pre_cell_tl
2658 \tl_gclear:N \g_@@_pre_cell_tl
2659 \tl_gput_right:Nn \g_@@_array_preamble_tl
2660 {
2661 > {

In the cells of a column of type S, we have to wrap the command \@@_node_cell: for the horizontal
alignment of the content of the cell (siunitx has done a job but it’s without effect since we have to
put the content in a box for the PGF/TikZ node and that’s why we have to do the job of horizontal
alignement once again).

2662 \socket_assign_plug:nn { nicematrix / siunitx-wrap } { active }
2663 \keys_set:nn { siunitx } { #1 }
2664 \@@_cell_begin:
2665 \siunitx_cell_begin:w
2666 }
2667 c
2668 <
2669 {
2670 \siunitx_cell_end:

We want the value of \l__siunitx_table_text_bool available after \@@_cell_end: because we
need it to know how to align our box after the construction of the PGF/TikZ node. That’s why
we use \g_@@_cell_after_hook_tl to reset the correct value of \l__siunitx_table_text_bool (of
course, if will stay local within the cell of the underlying \halign).

2671 \tl_gput_right:Ne \g_@@_cell_after_hook_tl
2672 {
2673 \bool_if:NTF \l__siunitx_table_text_bool
2674 { \bool_set_true:N }
2675 { \bool_set_false:N }
2676 \l__siunitx_table_text_bool
2677 }
2678 \@@_cell_end:
2679 }
2680 }

We increment the counter of columns and then we test for the presence of a <.
2681 \int_gincr:N \c@jCol
2682 \@@_rec_preamble_after_col:n
2683 }

For (, [and \{.
2684 \cs_new_protected:cpn { @@ _ \token_to_str:N (: } #1 #2
2685 {
2686 \bool_if:NT \l_@@_small_bool { \@@_fatal:n { Delimiter~with~small } }

If we are before the column 1 and not in {NiceArray}, we reserve space for the left delimiter.
2687 \int_if_zero:nTF { \c@jCol }
2688 {
2689 \tl_if_eq:NNTF \g_@@_left_delim_tl \c_@@_dot_tl
2690 {

In that case, in fact, the first letter of the preamble must be considered as the left delimiter of the
array.

2691 \tl_gset:Nn \g_@@_left_delim_tl { #1 }
2692 \tl_gset_eq:NN \g_@@_right_delim_tl \c_@@_dot_tl

72

2693 \@@_rec_preamble:n #2
2694 }
2695 {
2696 \tl_gput_right:Nn \g_@@_array_preamble_tl { ! { \enskip } }
2697 \@@_make_preamble_iv:nn { #1 } { #2 }
2698 }
2699 }
2700 { \@@_make_preamble_iv:nn { #1 } { #2 } }
2701 }
2702 \cs_set_eq:cc { @@ _ \token_to_str:N [: } { @@ _ \token_to_str:N (: }
2703 \cs_set_eq:cc { @@ _ \token_to_str:N \{ : } { @@ _ \token_to_str:N (: }

2704 \cs_new_protected:Npn \@@_make_preamble_iv:nn #1 #2
2705 {
2706 \tl_gput_right:Ne \g_@@_pre_code_after_tl
2707 { \@@_delimiter:nnn #1 { \int_eval:n { \c@jCol + 1 } } \c_true_bool }
2708 \tl_if_in:nnTF { ([\{)] \} \left \right } { #2 }
2709 {
2710 \@@_error:nn { delimiter~after~opening } { #2 }
2711 \@@_rec_preamble:n
2712 }
2713 { \@@_rec_preamble:n #2 }
2714 }

In fact, if would be possible to define \left and \right as no-op.
2715 \cs_new_protected:cpn { @@ _ \token_to_str:N \left : } #1
2716 { \use:c { @@ _ \token_to_str:N (: } }

For the closing delimiters. We have two arguments for the following command because we directly
read the following letter in the preamble (we have to see whether we have a opening delimiter following
and we also have to see whether we are at the end of the preamble because, in that case, our letter
must be considered as the right delimiter of the environment if the environment is {NiceArray}).

2717 \cs_new_protected:cpn { @@ _ \token_to_str:N) : } #1 #2
2718 {
2719 \bool_if:NT \l_@@_small_bool { \@@_fatal:n { Delimiter~with~small } }
2720 \tl_if_in:nnTF {)] \} } { #2 }
2721 { \@@_make_preamble_v:nnn #1 #2 }
2722 {
2723 \str_if_eq:nnTF { \s_stop } { #2 }
2724 {
2725 \tl_if_eq:NNTF \g_@@_right_delim_tl \c_@@_dot_tl
2726 { \tl_gset:Nn \g_@@_right_delim_tl { #1 } }
2727 {
2728 \tl_gput_right:Nn \g_@@_array_preamble_tl { ! { \enskip } }
2729 \tl_gput_right:Ne \g_@@_pre_code_after_tl
2730 { \@@_delimiter:nnn #1 { \int_use:N \c@jCol } \c_false_bool }
2731 \@@_rec_preamble:n #2
2732 }
2733 }
2734 {
2735 \tl_if_in:nnT { ([\{ \left } { #2 }
2736 { \tl_gput_right:Nn \g_@@_array_preamble_tl { ! { \enskip } } }
2737 \tl_gput_right:Ne \g_@@_pre_code_after_tl
2738 { \@@_delimiter:nnn #1 { \int_use:N \c@jCol } \c_false_bool }
2739 \@@_rec_preamble:n #2
2740 }
2741 }
2742 }
2743 \cs_set_eq:cc { @@ _ \token_to_str:N] : } { @@ _ \token_to_str:N) : }
2744 \cs_set_eq:cc { @@ _ \token_to_str:N \} : } { @@ _ \token_to_str:N) : }

2745 \cs_new_protected:Npn \@@_make_preamble_v:nnn #1 #2 #3
2746 {
2747 \str_if_eq:nnTF { \s_stop } { #3 }

73

2748 {
2749 \tl_if_eq:NNTF \g_@@_right_delim_tl \c_@@_dot_tl
2750 {
2751 \tl_gput_right:Nn \g_@@_array_preamble_tl { ! { \enskip } }
2752 \tl_gput_right:Ne \g_@@_pre_code_after_tl
2753 { \@@_delimiter:nnn #1 { \int_use:N \c@jCol } \c_false_bool }
2754 \tl_gset:Nn \g_@@_right_delim_tl { #2 }
2755 }
2756 {
2757 \tl_gput_right:Nn \g_@@_array_preamble_tl { ! { \enskip } }
2758 \tl_gput_right:Ne \g_@@_pre_code_after_tl
2759 { \@@_delimiter:nnn #1 { \int_use:N \c@jCol } \c_false_bool }
2760 \@@_error:nn { double~closing~delimiter } { #2 }
2761 }
2762 }
2763 {
2764 \tl_gput_right:Ne \g_@@_pre_code_after_tl
2765 { \@@_delimiter:nnn #1 { \int_use:N \c@jCol } \c_false_bool }
2766 \@@_error:nn { double~closing~delimiter } { #2 }
2767 \@@_rec_preamble:n #3
2768 }
2769 }

2770 \cs_new_protected:cpn { @@ _ \token_to_str:N \right : } #1
2771 { \use:c { @@ _ \token_to_str:N) : } }

After a specifier of column, we have to test whether there is one or several <{..} because, after those
potential <{...}, we have to insert !{\skip_horizontal:N ...} when the key vlines is used. In
fact, we have also to test whether there is, after the <{...}, a @{...}.

2772 \cs_new_protected:Npn \@@_rec_preamble_after_col:n #1
2773 {
2774 \str_if_eq:nnTF { #1 } { < }
2775 { \@@_rec_preamble_after_col_i:n }
2776 {
2777 \str_if_eq:nnTF { #1 } { @ }
2778 { \@@_rec_preamble_after_col_ii:n }
2779 {
2780 \str_if_eq:eeTF { \l_@@_vlines_clist } { all }
2781 {
2782 \tl_gput_right:Nn \g_@@_array_preamble_tl
2783 { ! { \skip_horizontal:N \arrayrulewidth } }
2784 }
2785 {
2786 \clist_if_in:NeT \l_@@_vlines_clist
2787 { \int_eval:n { \c@jCol + 1 } }
2788 {
2789 \tl_gput_right:Nn \g_@@_array_preamble_tl
2790 { ! { \skip_horizontal:N \arrayrulewidth } }
2791 }
2792 }
2793 \@@_rec_preamble:n { #1 }
2794 }
2795 }
2796 }

2797 \cs_new_protected:Npn \@@_rec_preamble_after_col_i:n #1
2798 {
2799 \tl_gput_right:Nn \g_@@_array_preamble_tl { < { #1 } }
2800 \@@_rec_preamble_after_col:n
2801 }

We have to catch a @{...} after a specifier of column because, if we have to draw a vertical rule, we
have to add in that @{...} a \hskip corresponding to the width of the vertical rule.

74

2802 \cs_new_protected:Npn \@@_rec_preamble_after_col_ii:n #1
2803 {
2804 \str_if_eq:eeTF { \l_@@_vlines_clist } { all }
2805 {
2806 \tl_gput_right:Nn \g_@@_array_preamble_tl
2807 { @ { #1 \skip_horizontal:N \arrayrulewidth } }
2808 }
2809 {
2810 \clist_if_in:NeTF \l_@@_vlines_clist { \int_eval:n { \c@jCol + 1 } }
2811 {
2812 \tl_gput_right:Nn \g_@@_array_preamble_tl
2813 { @ { #1 \skip_horizontal:N \arrayrulewidth } }
2814 }
2815 { \tl_gput_right:Nn \g_@@_array_preamble_tl { @ { #1 } } }
2816 }
2817 \@@_rec_preamble:n
2818 }

2819 \cs_new_protected:cpn { @@ _ * : } #1 #2 #3
2820 {
2821 \tl_clear:N \l_tmpa_tl
2822 \int_step_inline:nn { #2 } { \tl_put_right:Nn \l_tmpa_tl { #3 } }
2823 \exp_last_unbraced:No \@@_rec_preamble:n \l_tmpa_tl
2824 }

The token \NC@find is at the head of the definition of the columns type done by \newcolumntype.
We want that token to be no-op here.

2825 \cs_new_protected:cpn { @@ _ \token_to_str:N \NC@find : } #1
2826 { \@@_rec_preamble:n }

For the case of a letter X. This specifier may take in an optional argument (between square brackets).
That’s why we test whether there is a [after the letter X.

2827 \cs_new_protected:Npn \@@_X: #1 #2
2828 {
2829 \str_if_eq:nnTF { #2 } { [}
2830 { \@@_make_preamble_X:w [}
2831 { \@@_make_preamble_X:w [] #2 }
2832 }

2833 \cs_new_protected:Npn \@@_make_preamble_X:w [#1]
2834 { \@@_make_preamble_X_i:n { #1 } }

#1 is the optional argument of the X specifier (a list of key-value pairs).

The following set of keys is for the specifier X in the preamble of the array. Such specifier may have as
keys all the keys of { nicematrix / p-column } but also a key V and also a key which corresponds
to a positive number (1, 2, 0.5, etc.) which is the weight of the columns. The following set of keys
will be used to retrieve that value and store it in \l_tmpa_fp.

2835 \keys_define:nn { nicematrix / X-column }
2836 {
2837 V .code:n =
2838 \IfPackageLoadedTF { varwidth }
2839 {
2840 \bool_set_true:N \l_@@_V_of_X_bool
2841 \bool_gset_true:N \g_@@_V_of_X_bool
2842 }
2843 { \@@_error_or_warning:n { varwidth~not~loaded~in~X } } ,
2844 unknown .code:n =
2845 \regex_if_match:nVTF { \A[0-9]*\.?[0-9]*\Z } \l_keys_key_str
2846 { \fp_set:Nn \l_tmpa_fp { \l_keys_key_str } }
2847 { \@@_error_or_warning:n { invalid~weight } }
2848 }

75

In the following command, #1 is the list of the options of the specifier X.
2849 \cs_new_protected:Npn \@@_make_preamble_X_i:n #1
2850 {

The possible values of \l_@@_hpos_col_str are j (for justified which is the initial value), l, c and r
(when the user has used the corresponding key in the optional argument of the specifier X).

2851 \str_set:Nn \l_@@_hpos_col_str { j }

The possible values of \l_@@_vpos_col_str are p (the initial value), m and b (when the user has used
the corresponding key in the optional argument of the specifier X).

2852 \str_set:Nn \l_@@_vpos_col_str { p }

We will store in \l_tmpa_fp the weight of the column (\l_tmpa_fp also appears in {nicematrix/X-
column} and the error message invalid~weight.

2853 \fp_set:Nn \l_tmpa_fp { 1.0 }

2854 \@@_keys_p_column:n { #1 }

The unknown keys have been stored by \@@_keys_p_column:n in \l_tmpa_tl and we use them right
away in the set of keys nicematrix/X-column in order to retrieve the potential weight explicitely
provided by the final user.

2855 \bool_set_false:N \l_@@_V_of_X_bool
2856 \keys_set:no { nicematrix / X-column } \l_tmpa_tl

Now, the weight of the column is stored in \l_tmpa_tl.
2857 \fp_gadd:Nn \g_@@_total_X_weight_fp \l_tmpa_fp

We test whether we know the actual width of the X-columns by reading the aux file (after the first
compilation, the width of the X-columns is computed and written in the aux file).

2858 \bool_if:NTF \l_@@_X_columns_aux_bool
2859 {
2860 \@@_make_preamble_ii_iv:nnn

Of course, the weight of a column depends of its weight (in \l_tmpa_fp).
2861 { \fp_use:N \l_tmpa_fp \l_@@_X_columns_dim }
2862 { \bool_if:NTF \l_@@_V_of_X_bool { varwidth } { minipage } }
2863 { \@@_no_update_width: }
2864 }

In the current compilation, we don’t known the actual width of the X column. However, you have to
construct the cells of that column! By convention, we have decided to compose in a {minipage} of
width 5 cm even though we will nullify \l_@@_cell_box after its composition.

2865 {
2866 \tl_gput_right:Nn \g_@@_array_preamble_tl
2867 {
2868 > {
2869 \@@_cell_begin:
2870 \bool_set_true:N \l_@@_X_bool

You encounter a problem on 2023-03-04: for an environment with X columns, during the first com-
pilations (which are not the definitive one), sometimes, some cells are declared empty even if they
should not. That’s a problem because user’s instructions may use these nodes. That’s why we have
added the following \NotEmpty.

2871 \NotEmpty

The following code will nullify the box of the cell.
2872 \tl_gput_right:Nn \g_@@_cell_after_hook_tl
2873 { \hbox_set:Nn \l_@@_cell_box { } }

We put a {minipage} to give to the user the ability to put a command such as \centering in the
\RowStyle.

2874 \begin { minipage } { 5 cm } \arraybackslash
2875 }
2876 c
2877 < {
2878 \end { minipage }
2879 \@@_cell_end:

76

2880 }
2881 }
2882 \int_gincr:N \c@jCol
2883 \@@_rec_preamble_after_col:n
2884 }
2885 }

2886 \cs_new_protected:Npn \@@_no_update_width:
2887 {
2888 \tl_gput_right:Nn \g_@@_cell_after_hook_tl
2889 { \cs_set_eq:NN \@@_update_max_cell_width: \prg_do_nothing: }
2890 }

For the letter set by the user with vlines-in-sub-matrix (vlism).
2891 \cs_new_protected:Npn \@@_make_preamble_vlism:n #1
2892 {
2893 \seq_gput_right:Ne \g_@@_cols_vlism_seq
2894 { \int_eval:n { \c@jCol + 1 } }
2895 \tl_gput_right:Ne \g_@@_array_preamble_tl
2896 { \exp_not:N ! { \skip_horizontal:N \arrayrulewidth } }
2897 \@@_rec_preamble:n
2898 }

The token \s_stop is a marker that we have inserted to mark the end of the preamble (as provided
by the final user) that we have inserted in the TeX flow.

2899 \cs_set_eq:cN { @@ _ \token_to_str:N \s_stop : } \use_none:n

The following lines try to catch some errors (when the final user has forgotten the preamble of its
environment).

2900 \cs_new_protected:cpn { @@ _ \token_to_str:N \hline : }
2901 { \@@_fatal:n { Preamble~forgotten } }
2902 \cs_set_eq:cc { @@ _ \token_to_str:N \Hline : } { @@ _ \token_to_str:N \hline : }
2903 \cs_set_eq:cc { @@ _ \token_to_str:N \toprule : }
2904 { @@ _ \token_to_str:N \hline : }
2905 \cs_set_eq:cc { @@ _ \token_to_str:N \Block : } { @@ _ \token_to_str:N \hline : }
2906 \cs_set_eq:cc { @@ _ \token_to_str:N \CodeBefore : }
2907 { @@ _ \token_to_str:N \hline : }
2908 \cs_set_eq:cc { @@ _ \token_to_str:N \RowStyle : }
2909 { @@ _ \token_to_str:N \hline : }
2910 \cs_set_eq:cc { @@ _ \token_to_str:N \diagbox : }
2911 { @@ _ \token_to_str:N \hline : }
2912 \cs_set_eq:cc { @@ _ \token_to_str:N & : }
2913 { @@ _ \token_to_str:N \hline : }

12 The redefinition of \multicolumn

The following command must not be protected since it begins with \multispan (a TeX primitive).
2914 \cs_new:Npn \@@_multicolumn:nnn #1 #2 #3
2915 {

The following lines are from the definition of \multicolumn in array (and not in standard LaTeX).
The first line aims to raise an error if the user has put more that one column specifier in the preamble
of \multicolumn.

2916 \multispan { #1 }
2917 \cs_set_eq:NN \@@_update_max_cell_width: \prg_do_nothing:
2918 \begingroup
2919 \tbl_update_multicolumn_cell_data:n { #1 }

77

Now, we patch the (small) preamble as we have done with the main preamble of the array.
2920 \tl_gclear:N \g_@@_preamble_tl
2921 \@@_make_m_preamble:n #2 \q_stop

The following lines are an adaptation of the definition of \multicolumn in array.
2922 \def \@addamp
2923 {
2924 \legacy_if:nTF { @firstamp }
2925 { \legacy_if_set_false:n { @firstamp } }
2926 { \@preamerr 5 }
2927 }
2928 \exp_args:No \@mkpream \g_@@_preamble_tl
2929 \@addtopreamble \@empty
2930 \endgroup
2931 \UseTaggingSocket { tbl / colspan } { #1 }

Now, we do a treatment specific to nicematrix which has no equivalent in the original definition of
\multicolumn.

2932 \int_compare:nNnT { #1 } > { \c_one_int }
2933 {
2934 \seq_gput_left:Ne \g_@@_multicolumn_cells_seq
2935 { \int_use:N \c@iRow - \int_eval:n { \c@jCol + 1 } }
2936 \seq_gput_left:Nn \g_@@_multicolumn_sizes_seq { #1 }
2937 \seq_gput_right:Ne \g_@@_pos_of_blocks_seq
2938 {
2939 {
2940 \int_if_zero:nTF { \c@jCol }
2941 { \int_eval:n { \c@iRow + 1 } }
2942 { \int_use:N \c@iRow }
2943 }
2944 { \int_eval:n { \c@jCol + 1 } }
2945 {
2946 \int_if_zero:nTF { \c@jCol }
2947 { \int_eval:n { \c@iRow + 1 } }
2948 { \int_use:N \c@iRow }
2949 }
2950 { \int_eval:n { \c@jCol + #1 } }

The last argument is for the name of the block.
2951 { }
2952 }
2953 }

We want \cellcolor to be available in \multicolumn because \cellcolor of colortbl is available in
\multicolumn.

2954 \RenewDocumentCommand { \cellcolor } { O { } m }
2955 {
2956 \tl_gput_right:Ne \g_@@_pre_code_before_tl
2957 {
2958 \@@_rectanglecolor [##1]
2959 { \exp_not:n { ##2 } }
2960 { \int_use:N \c@iRow - \int_use:N \c@jCol }
2961 { \int_use:N \c@iRow - \int_eval:n { \c@jCol + #1 } }
2962 }
2963 \ignorespaces
2964 }

The following lines were in the original definition of \multicolumn.
2965 \def \@sharp { #3 }
2966 \@arstrut
2967 \@preamble
2968 \null

78

We add some lines.
2969 \int_gadd:Nn \c@jCol { #1 - 1 }
2970 \int_compare:nNnT { \c@jCol } > { \g_@@_col_total_int }
2971 { \int_gset_eq:NN \g_@@_col_total_int \c@jCol }
2972 \ignorespaces
2973 }

The following commands will patch the (small) preamble of the \multicolumn. All those commands
have a m in their name to recall that they deal with the redefinition of \multicolumn.

2974 \cs_new_protected:Npn \@@_make_m_preamble:n #1
2975 {
2976 \str_case:nnF { #1 }
2977 {
2978 c { \@@_make_m_preamble_i:n #1 }
2979 l { \@@_make_m_preamble_i:n #1 }
2980 r { \@@_make_m_preamble_i:n #1 }
2981 > { \@@_make_m_preamble_ii:nn #1 }
2982 ! { \@@_make_m_preamble_ii:nn #1 }
2983 @ { \@@_make_m_preamble_ii:nn #1 }
2984 | { \@@_make_m_preamble_iii:n #1 }
2985 p { \@@_make_m_preamble_iv:nnn t #1 }
2986 m { \@@_make_m_preamble_iv:nnn c #1 }
2987 b { \@@_make_m_preamble_iv:nnn b #1 }
2988 w { \@@_make_m_preamble_v:nnnn { } #1 }
2989 W { \@@_make_m_preamble_v:nnnn { \@@_special_W: } #1 }
2990 \q_stop { }
2991 }
2992 {
2993 \cs_if_exist:cTF { NC @ find @ #1 }
2994 {
2995 \tl_set_eq:Nc \l_tmpa_tl { NC @ rewrite @ #1 }
2996 \exp_last_unbraced:No \@@_make_m_preamble:n \l_tmpa_tl
2997 }
2998 {

2999 \str_if_eq:nnTF { #1 } { S }
3000 { \@@_fatal:n { unknown~column~type~S~multicolumn } }
3001 { \@@_fatal:nn { unknown~column~type~multicolumn } { #1 } }
3002 }
3003 }
3004 }

For c, l and r
3005 \cs_new_protected:Npn \@@_make_m_preamble_i:n #1
3006 {
3007 \tl_gput_right:Nn \g_@@_preamble_tl
3008 {
3009 > { \@@_cell_begin: \tl_set:Nn \l_@@_hpos_cell_tl { #1 } }
3010 #1
3011 < \@@_cell_end:
3012 }

We test for the presence of a <.
3013 \@@_make_m_preamble_x:n
3014 }

For >, ! and @
3015 \cs_new_protected:Npn \@@_make_m_preamble_ii:nn #1 #2
3016 {
3017 \tl_gput_right:Nn \g_@@_preamble_tl { #1 { #2 } }
3018 \@@_make_m_preamble:n
3019 }

79

For |
3020 \cs_new_protected:Npn \@@_make_m_preamble_iii:n #1
3021 {
3022 \tl_gput_right:Nn \g_@@_preamble_tl { #1 }
3023 \@@_make_m_preamble:n
3024 }

For p, m and b
3025 \cs_new_protected:Npn \@@_make_m_preamble_iv:nnn #1 #2 #3
3026 {
3027 \tl_gput_right:Nn \g_@@_preamble_tl
3028 {
3029 > {
3030 \@@_cell_begin:

We use \setlength instead of \dim_set:N to allow a specifier like p{\widthof{Some words}}.
widthof is a command provided by calc. Of course, even if calc is not loaded, the following code will
work with the standard version of \setlength.

3031 \setlength { \l_tmpa_dim } { #3 }
3032 \begin { minipage } [#1] { \l_tmpa_dim }
3033 \mode_leave_vertical:
3034 \arraybackslash
3035 \vrule height \box_ht:N \@arstrutbox depth \c_zero_dim width \c_zero_dim
3036 }
3037 c
3038 < {
3039 \vrule height \c_zero_dim depth \box_dp:N \@arstrutbox width \c_zero_dim
3040 \end { minipage }
3041 \@@_cell_end:
3042 }
3043 }

We test for the presence of a <.
3044 \@@_make_m_preamble_x:n
3045 }

For w and W
3046 \cs_new_protected:Npn \@@_make_m_preamble_v:nnnn #1 #2 #3 #4
3047 {
3048 \tl_gput_right:Nn \g_@@_preamble_tl
3049 {
3050 > {
3051 \dim_set:Nn \l_@@_col_width_dim { #4 }
3052 \hbox_set:Nw \l_@@_cell_box
3053 \@@_cell_begin:
3054 \tl_set:Nn \l_@@_hpos_cell_tl { #3 }
3055 }
3056 c
3057 < {
3058 \@@_cell_end:
3059 \hbox_set_end:
3060 \bool_if:NT \g_@@_rotate_bool { \@@_rotate_cell_box: }
3061 #1
3062 \@@_adjust_size_box:
3063 \makebox [#4] [#3] { \box_use_drop:N \l_@@_cell_box }
3064 }
3065 }

We test for the presence of a <.
3066 \@@_make_m_preamble_x:n
3067 }

80

After a specifier of column, we have to test whether there is one or several <{..}.
3068 \cs_new_protected:Npn \@@_make_m_preamble_x:n #1
3069 {
3070 \str_if_eq:nnTF { #1 } { < }
3071 { \@@_make_m_preamble_ix:n }
3072 { \@@_make_m_preamble:n { #1 } }
3073 }

3074 \cs_new_protected:Npn \@@_make_m_preamble_ix:n #1
3075 {
3076 \tl_gput_right:Nn \g_@@_preamble_tl { < { #1 } }
3077 \@@_make_m_preamble_x:n
3078 }

The command \@@_put_box_in_flow: puts the box \l_tmpa_box (which contains the array) in the
flow. It is used for the environments with delimiters. First, we have to modify the height and the
depth to take back into account the potential exterior rows (the total height of the first row has been
computed in \l_tmpa_dim and the total height of the potential last row in \l_tmpb_dim).

3079 \cs_new_protected:Npn \@@_put_box_in_flow:
3080 {
3081 \box_set_ht:Nn \l_tmpa_box { \box_ht:N \l_tmpa_box + \l_tmpa_dim }
3082 \box_set_dp:Nn \l_tmpa_box { \box_dp:N \l_tmpa_box + \l_tmpb_dim }
3083 \str_if_eq:eeTF { \l_@@_baseline_tl } { c }
3084 { \box_use_drop:N \l_tmpa_box }
3085 { \@@_put_box_in_flow_i: }
3086 }

The command \@@_put_box_in_flow_i: is used when the value of \l_@@_baseline_tl is different
of c (the initial value).

3087 \cs_new_protected:Npn \@@_put_box_in_flow_i:
3088 {
3089 \pgfpicture
3090 \@@_qpoint:n { row - 1 }
3091 \dim_gset_eq:NN \g_tmpa_dim \pgf@y
3092 \@@_qpoint:n { row - \int_eval:n { \c@iRow + 1 } }
3093 \dim_gadd:Nn \g_tmpa_dim \pgf@y
3094 \dim_gset:Nn \g_tmpa_dim { 0.5 \g_tmpa_dim }

Now, \g_tmpa_dim contains the y-value of the center of the array (the delimiters are centered in
relation with this value).

3095 \tl_if_in:NnTF \l_@@_baseline_tl { line- }
3096 {
3097 \int_set:Nn \l_tmpa_int
3098 { \str_range:Nnn \l_@@_baseline_tl { 6 } { -1 } }
3099 \bool_lazy_or:nnT
3100 { \int_compare_p:nNn { \l_tmpa_int } < { 1 } }
3101 { \int_compare_p:nNn { \l_tmpa_int } > { \c@iRow + 1 } }
3102 {
3103 \@@_error:n { bad~value~for~baseline-line }
3104 \int_set_eq:NN \l_tmpa_int \c_one_int
3105 }
3106 \@@_qpoint:n { row - \int_use:N \l_tmpa_int }
3107 }
3108 {
3109 \str_if_eq:eeTF { \l_@@_baseline_tl } { t }
3110 { \int_set_eq:NN \l_tmpa_int \c_one_int }
3111 {
3112 \str_if_eq:onTF \l_@@_baseline_tl { b }
3113 { \int_set_eq:NN \l_tmpa_int \c@iRow }
3114 { \int_set:Nn \l_tmpa_int \l_@@_baseline_tl }
3115 }
3116 \bool_lazy_or:nnT

81

3117 { \int_compare_p:nNn { \l_tmpa_int } < { \l_@@_first_row_int } }
3118 { \int_compare_p:nNn { \l_tmpa_int } > { \g_@@_row_total_int } }
3119 {
3120 \@@_error:n { bad~value~for~baseline }
3121 \int_set_eq:NN \l_tmpa_int \c_one_int
3122 }
3123 \@@_qpoint:n { row - \int_use:N \l_tmpa_int - base }

We take into account the position of the mathematical axis.
3124 \dim_gsub:Nn \g_tmpa_dim { \fontdimen22 \textfont2 }
3125 }
3126 \dim_gsub:Nn \g_tmpa_dim \pgf@y

Now, \g_tmpa_dim contains the value of the y translation we have to to.
3127 \endpgfpicture
3128 \box_move_up:nn \g_tmpa_dim { \box_use_drop:N \l_tmpa_box }
3129 \box_use_drop:N \l_tmpa_box
3130 }

The following command is always used by {NiceArrayWithDelims} (even if, in fact, there is no
tabular notes: in fact, it’s not possible to know whether there is tabular notes or not before the
composition of the blocks).

3131 \cs_new_protected:Npn \@@_use_arraybox_with_notes_c:
3132 {

With an environment {Matrix}, you want to remove the exterior \arraycolsep but we don’t know
the number of columns (since there is no preamble) and that’s why we can’t put @{} at the end of
the preamble. That’s why we remove a \arraycolsep now.

3133 \bool_if:NT \l_@@_NiceMatrix_without_vlines_bool
3134 {
3135 \int_compare:nNnT { \c@jCol } > { \c_one_int }
3136 {
3137 \box_set_wd:Nn \l_@@_the_array_box
3138 { \box_wd:N \l_@@_the_array_box - \arraycolsep }
3139 }
3140 }

We need a {minipage} because we will insert a LaTeX list for the tabular notes (that means that a
\vtop{\hsize=...} is not enough).

3141 \begin { minipage } [t] { \box_wd:N \l_@@_the_array_box }
3142 \bool_if:NT \l_@@_caption_above_bool
3143 {
3144 \tl_if_empty:NF \l_@@_caption_tl
3145 {

3146 \bool_set_false:N \g_@@_caption_finished_bool
3147 \int_gzero:N \c@tabularnote
3148 \@@_insert_caption:

If there is one or several commands \tabularnote in the caption, we will write in the aux file the
number of such tabular notes... but only the tabular notes for which the command \tabularnote
has been used without its optional argument (between square brackets).

3149 \int_compare:nNnT { \g_@@_notes_caption_int } > { \c_zero_int }
3150 {
3151 \tl_gput_right:Ne \g_@@_aux_tl
3152 {
3153 \tl_set:Nn \exp_not:N \l_@@_note_in_caption_tl
3154 { \int_use:N \g_@@_notes_caption_int }
3155 }
3156 \int_gzero:N \g_@@_notes_caption_int
3157 }
3158 }
3159 }

82

The \hbox avoids that the pgfpicture inside \@@_draw_blocks adds a extra vertical space before
the notes.

3160 \hbox
3161 {
3162 \box_use_drop:N \l_@@_the_array_box

We have to draw the blocks right away because there may be tabular notes in some blocks (which are
not mono-column: the blocks which are mono-column have been composed in boxes yet)... and we
have to create (potentially) the extra nodes before creating the blocks since there are medium nodes
to create for the blocks.

3163 \@@_create_extra_nodes:
3164 \seq_if_empty:NF \g_@@_blocks_seq { \@@_draw_blocks: }
3165 }

We don’t do the following test with \c@tabularnote because the value of that counter is not reli-
able when the command \ttabbox of floatrow is used (because \ttabbox de-activate \stepcounter
because it compiles twice its tabular).

3166 \bool_lazy_any:nT
3167 {
3168 { ! \seq_if_empty_p:N \g_@@_notes_seq }
3169 { ! \seq_if_empty_p:N \g_@@_notes_in_caption_seq }
3170 { ! \tl_if_empty_p:o \g_@@_tabularnote_tl }
3171 }
3172 \@@_insert_tabularnotes:
3173 \cs_set_eq:NN \tabularnote \@@_tabularnote_error:n
3174 \bool_if:NF \l_@@_caption_above_bool { \@@_insert_caption: }
3175 \end { minipage }
3176 }

3177 \cs_new_protected:Npn \@@_insert_caption:
3178 {
3179 \tl_if_empty:NF \l_@@_caption_tl
3180 {
3181 \cs_if_exist:NTF \@captype
3182 { \@@_insert_caption_i: }
3183 { \@@_error:n { caption~outside~float } }
3184 }
3185 }

3186 \cs_new_protected:Npn \@@_insert_caption_i:
3187 {
3188 \group_begin:

The flag \l_@@_in_caption_bool affects only the behavior of the command \tabularnote when
used in the caption.

3189 \bool_set_true:N \l_@@_in_caption_bool

The package floatrow does a redefinition of \@makecaption which will extract the caption from the
tabular. However, the old version of \@makecaption has been stored by floatrow in \FR@makecaption.
That’s why we restore the old version.

3190 \IfPackageLoadedT { floatrow } { \cs_set_eq:NN \@makecaption \FR@makecaption }
3191 \tl_if_empty:NTF \l_@@_short_caption_tl
3192 { \caption }
3193 { \caption [\l_@@_short_caption_tl] }
3194 { \l_@@_caption_tl }

In some circonstancies (in particular when the package caption is loaded), the caption is composed
several times. That’s why, when the same tabular note is encountered (in the caption!), we consider
that you are in the second compilation and you can give to \g_@@_notes_caption_int its final value,
which is the number of tabular notes in the caption. But sometimes, the caption is composed only
once. In that case, we fix the value of \g_@@_caption_finished_bool now.

3195 \bool_if:NF \g_@@_caption_finished_bool

83

3196 {
3197 \bool_gset_true:N \g_@@_caption_finished_bool
3198 \int_gset_eq:NN \g_@@_notes_caption_int \c@tabularnote
3199 \int_gzero:N \c@tabularnote
3200 }
3201 \tl_if_empty:NF \l_@@_label_tl { \label { \l_@@_label_tl } }
3202 \group_end:
3203 }

3204 \cs_new_protected:Npn \@@_tabularnote_error:n #1
3205 {
3206 \@@_error_or_warning:n { tabularnote~below~the~tabular }
3207 \cs_gset:Npn \@@_tabularnote_error:n ##1 { }
3208 }

3209 \cs_new_protected:Npn \@@_insert_tabularnotes:
3210 {
3211 \seq_gconcat:NNN \g_@@_notes_seq \g_@@_notes_in_caption_seq \g_@@_notes_seq
3212 \int_set:Nn \c@tabularnote { \seq_count:N \g_@@_notes_seq }
3213 \skip_vertical:N 0.65ex

The TeX group is for potential specifications in the \l_@@_notes_code_before_tl.
3214 \group_begin:
3215 \l_@@_notes_code_before_tl
3216 \tl_if_empty:NF \g_@@_tabularnote_tl
3217 {
3218 \g_@@_tabularnote_tl \par
3219 \tl_gclear:N \g_@@_tabularnote_tl
3220 }

We compose the tabular notes with a list of enumitem. The \strut and the \unskip are designed to
give the ability to put a \bottomrule at the end of the notes with a good vertical space.

3221 \int_compare:nNnT { \c@tabularnote } > { \c_zero_int }
3222 {
3223 \bool_if:NTF \l_@@_notes_para_bool
3224 {
3225 \begin { tabularnotes* }
3226 \seq_map_inline:Nn \g_@@_notes_seq
3227 { \@@_one_tabularnote:nn ##1 }
3228 \strut
3229 \end { tabularnotes* }

The following \par is mandatory for the event that the user has put \footnotesize (for example)
in the notes/code-before.

3230 \par
3231 }
3232 {
3233 \tabularnotes
3234 \seq_map_inline:Nn \g_@@_notes_seq
3235 { \@@_one_tabularnote:nn ##1 }
3236 \strut
3237 \endtabularnotes
3238 }
3239 }
3240 \unskip
3241 \group_end:
3242 \bool_if:NT \l_@@_notes_bottomrule_bool
3243 {
3244 \IfPackageLoadedTF { booktabs }
3245 {

The two dimensions \aboverulesep et \heavyrulewidth are parameters defined by booktabs.
3246 \skip_vertical:N \aboverulesep

\CT@arc@ is the specification of color defined by colortbl but you use it even if colortbl is not loaded.
3247 { \CT@arc@ \hrule height \heavyrulewidth }

84

3248 }
3249 { \@@_error_or_warning:n { bottomrule~without~booktabs } }
3250 }
3251 \l_@@_notes_code_after_tl
3252 \seq_gclear:N \g_@@_notes_seq
3253 \seq_gclear:N \g_@@_notes_in_caption_seq
3254 \int_gzero:N \c@tabularnote
3255 }

The following command will format (after the main tabular) one tabularnote (with the command
\item) . #1 is the label (when the command \tabularnote has been used with an optional argument
between square brackets) and #2 is the text of the note. The second argument is provided by
curryfication.

3256 \cs_set_protected:Npn \@@_one_tabularnote:nn #1
3257 {
3258 \tl_if_novalue:nTF { #1 }
3259 { \item }
3260 { \item [\@@_notes_label_in_list:n { #1 }] }
3261 }

The case of baseline equal to b. Remember that, when the key b is used, the {array} (of array)
is constructed with the option t (and not b). Now, we do the translation to take into account the
option b.

3262 \cs_new_protected:Npn \@@_use_arraybox_with_notes_b:
3263 {
3264 \pgfpicture
3265 \@@_qpoint:n { row - 1 }
3266 \dim_gset_eq:NN \g_tmpa_dim \pgf@y
3267 \@@_qpoint:n { row - \int_use:N \c@iRow - base }
3268 \dim_gsub:Nn \g_tmpa_dim \pgf@y
3269 \endpgfpicture
3270 \dim_gadd:Nn \g_tmpa_dim \arrayrulewidth
3271 \int_if_zero:nT { \l_@@_first_row_int }
3272 {
3273 \dim_gadd:Nn \g_tmpa_dim \g_@@_ht_row_zero_dim
3274 \dim_gadd:Nn \g_tmpa_dim \g_@@_dp_row_zero_dim
3275 }
3276 \box_move_up:nn \g_tmpa_dim { \hbox { \@@_use_arraybox_with_notes_c: } }
3277 }

Now, the general case.
3278 \cs_new_protected:Npn \@@_use_arraybox_with_notes:
3279 {

We convert a value of t to a value of 1.
3280 \str_if_eq:eeT { \l_@@_baseline_tl } { t }
3281 { \tl_set:Nn \l_@@_baseline_tl { 1 } }

Now, we convert the value of \l_@@_baseline_tl (which should represent an integer) to an integer
stored in \l_tmpa_int.

3282 \pgfpicture
3283 \@@_qpoint:n { row - 1 }
3284 \dim_gset_eq:NN \g_tmpa_dim \pgf@y
3285 \tl_if_in:NnTF \l_@@_baseline_tl { line- }
3286 {
3287 \int_set:Nn \l_tmpa_int
3288 {
3289 \str_range:Nnn
3290 \l_@@_baseline_tl
3291 { 6 }
3292 { \tl_count:o \l_@@_baseline_tl }
3293 }
3294 \@@_qpoint:n { row - \int_use:N \l_tmpa_int }

85

3295 }
3296 {
3297 \int_set:Nn \l_tmpa_int \l_@@_baseline_tl
3298 \bool_lazy_or:nnT
3299 { \int_compare_p:nNn { \l_tmpa_int } < { \l_@@_first_row_int } }
3300 { \int_compare_p:nNn { \l_tmpa_int } > { \g_@@_row_total_int } }
3301 {
3302 \@@_error:n { bad~value~for~baseline }
3303 \int_set:Nn \l_tmpa_int 1
3304 }
3305 \@@_qpoint:n { row - \int_use:N \l_tmpa_int - base }
3306 }
3307 \dim_gsub:Nn \g_tmpa_dim \pgf@y
3308 \endpgfpicture
3309 \dim_gadd:Nn \g_tmpa_dim \arrayrulewidth
3310 \int_if_zero:nT { \l_@@_first_row_int }
3311 {
3312 \dim_gadd:Nn \g_tmpa_dim \g_@@_ht_row_zero_dim
3313 \dim_gadd:Nn \g_tmpa_dim \g_@@_dp_row_zero_dim
3314 }
3315 \box_move_up:nn \g_tmpa_dim { \hbox { \@@_use_arraybox_with_notes_c: } }
3316 }

The command \@@_put_box_in_flow_bis: is used when the option delimiters/max-width is used
because, in this case, we have to adjust the widths of the delimiters. The arguments #1 and #2 are
the delimiters specified by the user.

3317 \cs_new_protected:Npn \@@_put_box_in_flow_bis:nn #1 #2
3318 {

We will compute the real width of both delimiters used.
3319 \dim_zero_new:N \l_@@_real_left_delim_dim
3320 \dim_zero_new:N \l_@@_real_right_delim_dim
3321 \hbox_set:Nn \l_tmpb_box
3322 {
3323 \m@th
3324 $ % $
3325 \left #1
3326 \vcenter
3327 {
3328 \vbox_to_ht:nn
3329 { \box_ht_plus_dp:N \l_tmpa_box }
3330 { }
3331 }
3332 \right .
3333 $ % $
3334 }
3335 \dim_set:Nn \l_@@_real_left_delim_dim
3336 { \box_wd:N \l_tmpb_box - \nulldelimiterspace }
3337 \hbox_set:Nn \l_tmpb_box
3338 {
3339 \m@th
3340 $ % $
3341 \left .
3342 \vbox_to_ht:nn
3343 { \box_ht_plus_dp:N \l_tmpa_box }
3344 { }
3345 \right #2
3346 $ % $
3347 }
3348 \dim_set:Nn \l_@@_real_right_delim_dim
3349 { \box_wd:N \l_tmpb_box - \nulldelimiterspace }

Now, we can put the box in the TeX flow with the horizontal adjustments on both sides.
3350 \skip_horizontal:n { \l_@@_left_delim_dim - \l_@@_real_left_delim_dim }

86

3351 \@@_put_box_in_flow:
3352 \skip_horizontal:n { \l_@@_right_delim_dim - \l_@@_real_right_delim_dim }
3353 }

The construction of the array in the environment {NiceArrayWithDelims} is, in fact, done by the
environment {@@-light-syntax} or by the environment {@@-normal-syntax} (whether the option
light-syntax is in force or not). When the key light-syntax is not used, the construction is a
standard environment (and, thus, it’s possible to use verbatim in the array).

3354 \NewDocumentEnvironment { @@-normal-syntax } { }

First, we test whether the environment is empty. If it is empty, we raise a fatal error (it’s only a
security). In order to detect whether it is empty, we test whether the next token is \end and, if it’s
the case, we test if this is the end of the environment (if it is not, a standard error will be raised by
LaTeX for incorrect nested environments).

3355 {
3356 \peek_remove_spaces:n
3357 {
3358 \peek_meaning:NTF \end
3359 { \@@_analyze_end:Nn }
3360 {
3361 \@@_transform_preamble:

Here is the call to \array (we have a dedicated macro \@@_array:n because of compatibility with
the classes revtex4-1 and revtex4-2).

3362 \@@_array:o \g_@@_array_preamble_tl
3363 }
3364 }
3365 }
3366 {
3367 \@@_create_col_nodes:
3368 \endarray
3369 }

When the key light-syntax is in force, we use an environment which takes its whole body as an
argument (with the specifier b).

3370 \NewDocumentEnvironment { @@-light-syntax } { b }
3371 {

First, we test whether the environment is empty. It’s only a security. Of course, this test is more easy
than the similar test for the “normal syntax” because we have the whole body of the environment in
#1.

3372 \tl_if_empty:nT { #1 }
3373 { \@@_fatal:n { empty~environment } }
3374 \tl_if_in:nnT { #1 } { & }
3375 { \@@_fatal:n { ampersand~in~light-syntax } }
3376 \tl_if_in:nnT { #1 } { \\ }
3377 { \@@_fatal:n { double-backslash~in~light-syntax } }

Now, you extract the \CodeAfter of the body of the environment. Maybe, there is no com-
mand \CodeAfter in the body. That’s why you put a marker \CodeAfter after #1. If there
is yet a \CodeAfter in #1, this second (or third...) \CodeAfter will be caught in the value of
\g_nicematrix_code_after_tl. That doesn’t matter because \CodeAfter will be set to no-op be-
fore the execution of \g_nicematrix_code_after_tl.

3378 \@@_light_syntax_i:w #1 \CodeAfter \q_stop

The command \array is hidden somewhere in \@@_light_syntax_i:w.
3379 }

Now, the second part of the environment. We must leave these lines in the second part (and not put
them in the first part even though we caught the whole body of the environment with an argument
of type b) in order to have the columns S of siunitx working fine.

3380 {

87

3381 \@@_create_col_nodes:
3382 \endarray
3383 }

3384 \cs_new_protected:Npn \@@_light_syntax_i:w #1\CodeAfter #2 \q_stop
3385 {
3386 \tl_gput_right:Nn \g_nicematrix_code_after_tl { #2 }

The body of the array, which is stored in the argument #1, is now split into items (and not tokens).
3387 \seq_clear_new:N \l_@@_rows_seq

We rescan the character of end of line in order to have the correct catcode.
3388 \tl_set_rescan:Nno \l_@@_end_of_row_tl { } \l_@@_end_of_row_tl
3389 \bool_if:NTF \l_@@_light_syntax_expanded_bool
3390 { \seq_set_split:Nee }
3391 { \seq_set_split:Non }
3392 \l_@@_rows_seq \l_@@_end_of_row_tl { #1 }

We delete the last row if it is empty.
3393 \seq_pop_right:NN \l_@@_rows_seq \l_tmpa_tl
3394 \tl_if_empty:NF \l_tmpa_tl
3395 { \seq_put_right:No \l_@@_rows_seq \l_tmpa_tl }

If the environment uses the option last-row without value (i.e. without saying the number of the
rows), we have now the opportunity to compute that value. We do it, and so, if the token list
\l_@@_code_for_last_row_tl is not empty, we will use directly where it should be.

3396 \int_compare:nNnT { \l_@@_last_row_int } = { -1 }
3397 { \int_set:Nn \l_@@_last_row_int { \seq_count:N \l_@@_rows_seq } }

The new value of the body (that is to say after replacement of the separators of rows and columns
by \\ and &) of the environment will be stored in \l_@@_new_body_tl in order to allow the use of
commands such as \hline or \hdottedline with the key light-syntax).

3398 \tl_build_begin:N \l_@@_new_body_tl
3399 \int_zero_new:N \l_@@_nb_cols_int

First, we treat the first row.
3400 \seq_pop_left:NN \l_@@_rows_seq \l_tmpa_tl
3401 \@@_line_with_light_syntax:o \l_tmpa_tl

Now, the other rows (with the same treatment, excepted that we have to insert \\ between the rows).
3402 \seq_map_inline:Nn \l_@@_rows_seq
3403 {
3404 \tl_build_put_right:Nn \l_@@_new_body_tl { \\ }
3405 \@@_line_with_light_syntax:n { ##1 }
3406 }
3407 \tl_build_end:N \l_@@_new_body_tl

3408 \int_compare:nNnT { \l_@@_last_col_int } = { -1 }
3409 {
3410 \int_set:Nn \l_@@_last_col_int
3411 { \l_@@_nb_cols_int - 1 + \l_@@_first_col_int }
3412 }

Now, we can construct the preamble: if the user has used the key last-col, we have the correct
number of columns even though the user has used last-col without value.

3413 \@@_transform_preamble:

The call to \array is in the following command (we have a dedicated macro \@@_array: because of
compatibility with the classes revtex4-1 and revtex4-2).

3414 \@@_array:o \g_@@_array_preamble_tl \l_@@_new_body_tl
3415 }

88

3416 \cs_new_protected:Npn \@@_line_with_light_syntax:n #1
3417 {
3418 \seq_clear_new:N \l_@@_cells_seq
3419 \seq_set_split:Nnn \l_@@_cells_seq { ~ } { #1 }
3420 \int_set:Nn \l_@@_nb_cols_int
3421 {
3422 \int_max:nn
3423 { \l_@@_nb_cols_int }
3424 { \seq_count:N \l_@@_cells_seq }
3425 }
3426 \seq_pop_left:NN \l_@@_cells_seq \l_tmpa_tl
3427 \tl_build_put_right:No \l_@@_new_body_tl \l_tmpa_tl
3428 \seq_map_inline:Nn \l_@@_cells_seq
3429 { \tl_build_put_right:Nn \l_@@_new_body_tl { & ##1 } }
3430 }
3431 \cs_generate_variant:Nn \@@_line_with_light_syntax:n { o }

The following command is used by the code which detects whether the environment is empty (we
raise a fatal error in this case: it’s only a security). When this command is used, #1 is, in fact, always
\end.

3432 \cs_new_protected:Npn \@@_analyze_end:Nn #1 #2
3433 {
3434 \str_if_eq:eeT { \g_@@_name_env_str } { #2 }
3435 { \@@_fatal:n { empty~environment } }

We reput in the stream the \end{...} we have extracted and the user will have an error for incorrect
nested environments.

3436 \end { #2 }
3437 }

The command \@@_create_col_nodes: will construct a special last row. That last row is a false
row used to create the col nodes and to fix the width of the columns (when the array is constructed
with an option which specifies the width of the columns such as columns-width).

3438 \cs_new:Npn \@@_create_col_nodes:
3439 {
3440 \crcr
3441 \int_if_zero:nT { \l_@@_first_col_int }
3442 {
3443 \omit
3444 \hbox_overlap_left:n
3445 {
3446 \bool_if:NT \l_@@_code_before_bool
3447 { \pgfsys@markposition { \@@_env: - col - 0 } }
3448 \pgfpicture
3449 \pgfrememberpicturepositiononpagetrue
3450 \pgfcoordinate { \@@_env: - col - 0 } \pgfpointorigin
3451 \str_if_empty:NF \l_@@_name_str
3452 { \pgfnodealias { \l_@@_name_str - col - 0 } { \@@_env: - col - 0 } }
3453 \endpgfpicture
3454 \skip_horizontal:n { 2 \col@sep + \g_@@_width_first_col_dim }
3455 }
3456 &
3457 }
3458 \omit

The following instruction must be put after the instruction \omit since, of course, it is not expandable.
3459 \bool_gset_true:N \g_@@_row_of_col_done_bool

First, we put a col node on the left of the first column (of course, we have to do that after the
\omit).

3460 \int_if_zero:nTF { \l_@@_first_col_int }
3461 {
3462 \@@_mark_position:n { 1 }

89

3463 \pgfpicture
3464 \pgfrememberpicturepositiononpagetrue
3465 \pgfcoordinate { \@@_env: - col - 1 }
3466 { \pgfpoint { - 0.5 \arrayrulewidth } \c_zero_dim }
3467 \str_if_empty:NF \l_@@_name_str
3468 { \pgfnodealias { \l_@@_name_str - col - 1 } { \@@_env: - col - 1 } }
3469 \endpgfpicture
3470 }
3471 {
3472 \bool_if:NT \l_@@_code_before_bool
3473 {
3474 \hbox
3475 {
3476 \skip_horizontal:n { 0.5 \arrayrulewidth }
3477 \pgfsys@markposition { \@@_env: - col - 1 }
3478 \skip_horizontal:n { -0.5 \arrayrulewidth }
3479 }
3480 }
3481 \pgfpicture
3482 \pgfrememberpicturepositiononpagetrue
3483 \pgfcoordinate { \@@_env: - col - 1 }
3484 { \pgfpoint { 0.5 \arrayrulewidth } \c_zero_dim }
3485 \@@_node_alias:n { 1 }
3486 \endpgfpicture
3487 }

We compute in \g_tmpa_skip the common width of the columns (it’s a skip and not a dimension).
We use a global variable because we are in a cell of an \halign and because we have to use that
variable in other cells (of the same row). The affectation of \g_tmpa_skip, like all the affectations,
must be done after the \omit of the cell.
We give a default value for \g_tmpa_skip (0 pt plus 1 fill) but we will add some dimensions to
it.

3488 \skip_gset:Nn \g_tmpa_skip { 0 pt~plus 1 fill }
3489 \bool_if:NF \l_@@_auto_columns_width_bool
3490 { \dim_compare:nNnT { \l_@@_columns_width_dim } > { \c_zero_dim } }
3491 {
3492 \bool_lazy_and:nnTF
3493 { \l_@@_auto_columns_width_bool }
3494 { \bool_not_p:n \l_@@_block_auto_columns_width_bool }
3495 { \skip_gadd:Nn \g_tmpa_skip \g_@@_max_cell_width_dim }
3496 { \skip_gadd:Nn \g_tmpa_skip \l_@@_columns_width_dim }
3497 \skip_gadd:Nn \g_tmpa_skip { 2 \col@sep }
3498 }
3499 \skip_horizontal:N \g_tmpa_skip
3500 \hbox
3501 {
3502 \@@_mark_position:n { 2 }
3503 \pgfpicture
3504 \pgfrememberpicturepositiononpagetrue
3505 \pgfcoordinate { \@@_env: - col - 2 }
3506 { \pgfpoint { - 0.5 \arrayrulewidth } \c_zero_dim }
3507 \@@_node_alias:n { 2 }
3508 \endpgfpicture
3509 }

We begin a loop over the columns. The integer \g_tmpa_int will be the number of the current
column. This integer is used for the Tikz nodes.

3510 \int_gset_eq:NN \g_tmpa_int \c_one_int
3511 \bool_if:NTF \g_@@_last_col_found_bool
3512 { \prg_replicate:nn { \int_max:nn { \g_@@_col_total_int - 3 } { 0 } } }
3513 { \prg_replicate:nn { \int_max:nn { \g_@@_col_total_int - 2 } { 0 } } }
3514 {
3515 &
3516 \omit

90

3517 \int_gincr:N \g_tmpa_int

The incrementation of the counter \g_tmpa_int must be done after the \omit of the cell.
3518 \skip_horizontal:N \g_tmpa_skip
3519 \@@_mark_position:n { \int_eval:n { \g_tmpa_int + 1 } }

We create the col node on the right of the current column.
3520 \pgfpicture
3521 \pgfrememberpicturepositiononpagetrue
3522 \pgfcoordinate { \@@_env: - col - \int_eval:n { \g_tmpa_int + 1 } }
3523 { \pgfpoint { - 0.5 \arrayrulewidth } \c_zero_dim }
3524 \@@_node_alias:n { \int_eval:n { \g_tmpa_int + 1 } }
3525 \endpgfpicture
3526 }

If there is only one column (and a potential “last column”), we don’t have to put the following code
(there is only one column and we have put the correct code previously).

3527 \bool_lazy_or:nnF
3528 { \int_compare_p:nNn \g_@@_col_total_int = 1 }
3529 { \int_compare_p:nNn \g_@@_col_total_int = 2 && \g_@@_last_col_found_bool }
3530 {
3531 &
3532 \omit
3533 \skip_horizontal:N \g_tmpa_skip
3534 \int_gincr:N \g_tmpa_int
3535 \bool_lazy_any:nF
3536 {
3537 \g_@@_delims_bool
3538 \l_@@_tabular_bool
3539 { ! \clist_if_empty_p:N \l_@@_vlines_clist }
3540 \l_@@_exterior_arraycolsep_bool
3541 \l_@@_bar_at_end_of_pream_bool
3542 }
3543 { \skip_horizontal:n { - \col@sep } }
3544 \bool_if:NT \l_@@_code_before_bool
3545 {
3546 \hbox
3547 {
3548 \skip_horizontal:n { -0.5 \arrayrulewidth }

With an environment {Matrix}, you want to remove the exterior \arraycolsep but we don’t know
the number of columns (since there is no preamble) and that’s why we can’t put @{} at the end of
the preamble. That’s why we remove a \arraycolsep now.

3549 \bool_if:NT \l_@@_NiceMatrix_without_vlines_bool
3550 { \skip_horizontal:n { - \arraycolsep } }
3551 \pgfsys@markposition
3552 { \@@_env: - col - \int_eval:n { \g_tmpa_int + 1 } }
3553 \skip_horizontal:n { 0.5 \arrayrulewidth }
3554 \bool_if:NT \l_@@_NiceMatrix_without_vlines_bool
3555 { \skip_horizontal:N \arraycolsep }
3556 }
3557 }
3558 \pgfpicture
3559 \pgfrememberpicturepositiononpagetrue
3560 \pgfcoordinate { \@@_env: - col - \int_eval:n { \g_tmpa_int + 1 } }
3561 {
3562 \bool_if:NT \l_@@_NiceMatrix_without_vlines_bool
3563 {
3564 \pgfpoint
3565 { - 0.5 \arrayrulewidth - \arraycolsep }
3566 \c_zero_dim
3567 }
3568 { \pgfpoint { - 0.5 \arrayrulewidth } \c_zero_dim }
3569 }
3570 \@@_node_alias:n { \int_eval:n { \g_tmpa_int + 1 } }

91

3571 \endpgfpicture
3572 }

3573 \bool_if:NT \g_@@_last_col_found_bool
3574 {
3575 \hbox_overlap_right:n
3576 {
3577 \skip_horizontal:N \g_@@_width_last_col_dim
3578 \skip_horizontal:N \col@sep
3579 \bool_if:NT \l_@@_code_before_bool
3580 {
3581 \pgfsys@markposition
3582 { \@@_env: - col - \int_eval:n { \g_@@_col_total_int + 1 } }
3583 }
3584 \pgfpicture
3585 \pgfrememberpicturepositiononpagetrue
3586 \pgfcoordinate
3587 { \@@_env: - col - \int_eval:n { \g_@@_col_total_int + 1 } }
3588 \pgfpointorigin
3589 \@@_node_alias:n { \int_eval:n { \g_@@_col_total_int + 1 } }
3590 \endpgfpicture
3591 }
3592 }
3593 }

3594 \cs_new_protected:Npn \@@_mark_position:n #1
3595 {
3596 \bool_if:NT \l_@@_code_before_bool
3597 {
3598 \hbox
3599 {
3600 \skip_horizontal:n { -0.5 \arrayrulewidth }
3601 \pgfsys@markposition { \@@_env: - col - #1 }
3602 \skip_horizontal:n { 0.5 \arrayrulewidth }
3603 }
3604 }
3605 }

3606 \cs_new_protected:Npn \@@_node_alias:n #1
3607 {
3608 \str_if_empty:NF \l_@@_name_str
3609 { \pgfnodealias { \l_@@_name_str - col - #1 } { \@@_env: - col - #1 } }
3610 }

Here is the preamble for the “first column” (if the user uses the key first-col)
3611 \tl_const:Nn \c_@@_preamble_first_col_tl
3612 {
3613 >
3614 {

At the beginning of the cell, we link \CodeAfter to a command which begins with \\ (whereas the
standard version of \CodeAfter begins does not).

3615 \cs_set_eq:NN \CodeAfter \@@_CodeAfter_i:
3616 \bool_gset_true:N \g_@@_after_col_zero_bool
3617 \@@_begin_of_row:
3618 \hbox_set:Nw \l_@@_cell_box
3619 \@@_math_toggle:
3620 \@@_tuning_key_small:

92

We insert \l_@@_code_for_first_col_tl... but we don’t insert it in the potential “first row” and
in the potential “last row”.

3621 \int_compare:nNnT { \c@iRow } > { \c_zero_int }
3622 {
3623 \bool_lazy_or:nnT
3624 { \int_compare_p:nNn { \l_@@_last_row_int } < { \c_zero_int } }
3625 { \int_compare_p:nNn { \c@iRow } < { \l_@@_last_row_int } }
3626 {
3627 \l_@@_code_for_first_col_tl
3628 \xglobal \colorlet { nicematrix-first-col } { . }
3629 }
3630 }
3631 }

Be careful: despite this letter l the cells of the “first column” are composed in a R manner since they
are composed in a \hbox_overlap_left:n.

3632 l
3633 <
3634 {
3635 \@@_math_toggle:
3636 \hbox_set_end:
3637 \bool_if:NT \g_@@_rotate_bool { \@@_rotate_cell_box: }
3638 \@@_adjust_size_box:
3639 \@@_update_for_first_and_last_row:

We actualise the width of the “first column” because we will use this width after the construction of
the array.

3640 \dim_gset:Nn \g_@@_width_first_col_dim
3641 { \dim_max:nn { \g_@@_width_first_col_dim } { \box_wd:N \l_@@_cell_box } }

The content of the cell is inserted in an overlapping position.
3642 \hbox_overlap_left:n
3643 {
3644 \dim_compare:nNnTF { \box_wd:N \l_@@_cell_box } > { \c_zero_dim }
3645 { \@@_node_cell: }
3646 { \box_use_drop:N \l_@@_cell_box }
3647 \skip_horizontal:N \l_@@_left_delim_dim
3648 \skip_horizontal:N \l_@@_left_margin_dim
3649 \skip_horizontal:N \l_@@_extra_left_margin_dim
3650 }
3651 \bool_gset_false:N \g_@@_empty_cell_bool
3652 \skip_horizontal:n { -2 \col@sep }
3653 }
3654 }

Here is the preamble for the “last column” (if the user uses the key last-col).
3655 \tl_const:Nn \c_@@_preamble_last_col_tl
3656 {
3657 >
3658 {
3659 \bool_set_true:N \l_@@_in_last_col_bool

At the beginning of the cell, we link \CodeAfter to a command which begins with \\ (whereas the
standard version of \CodeAfter begins does not).

3660 \cs_set_eq:NN \CodeAfter \@@_CodeAfter_i:

With the flag \g_@@_last_col_found_bool, we will know that the “last column” is really used.
3661 \bool_gset_true:N \g_@@_last_col_found_bool
3662 \int_gincr:N \c@jCol
3663 \int_gset_eq:NN \g_@@_col_total_int \c@jCol
3664 \hbox_set:Nw \l_@@_cell_box
3665 \@@_math_toggle:
3666 \@@_tuning_key_small:

93

We insert \l_@@_code_for_last_col_tl... but we don’t insert it in the potential “first row” and in
the potential “last row”.

3667 \int_compare:nNnT { \c@iRow } > { \c_zero_int }
3668 {
3669 \bool_lazy_or:nnT
3670 { \int_compare_p:nNn { \l_@@_last_row_int } < { \c_zero_int } }
3671 { \int_compare_p:nNn { \c@iRow } < { \l_@@_last_row_int } }
3672 {
3673 \l_@@_code_for_last_col_tl
3674 \xglobal \colorlet { nicematrix-last-col } { . }
3675 }
3676 }
3677 }
3678 l
3679 <
3680 {
3681 \@@_math_toggle:
3682 \hbox_set_end:
3683 \bool_if:NT \g_@@_rotate_bool { \@@_rotate_cell_box: }
3684 \@@_adjust_size_box:
3685 \@@_update_for_first_and_last_row:

We actualise the width of the “last column” because we will use this width after the construction of
the array.

3686 \dim_gset:Nn \g_@@_width_last_col_dim
3687 { \dim_max:nn { \g_@@_width_last_col_dim } { \box_wd:N \l_@@_cell_box } }
3688 \skip_horizontal:n { -2 \col@sep }

The content of the cell is inserted in an overlapping position.
3689 \hbox_overlap_right:n
3690 {
3691 \dim_compare:nNnT { \box_wd:N \l_@@_cell_box } > { \c_zero_dim }
3692 {
3693 \skip_horizontal:N \l_@@_right_delim_dim
3694 \skip_horizontal:N \l_@@_right_margin_dim
3695 \skip_horizontal:N \l_@@_extra_right_margin_dim
3696 \@@_node_cell:
3697 }
3698 }
3699 \bool_gset_false:N \g_@@_empty_cell_bool
3700 }
3701 }

The environment {NiceArray} is constructed upon the environment {NiceArrayWithDelims}.
3702 \NewDocumentEnvironment { NiceArray } { }
3703 {
3704 \bool_gset_false:N \g_@@_delims_bool
3705 \str_if_empty:NT \g_@@_name_env_str
3706 { \str_gset:Nn \g_@@_name_env_str { NiceArray } }

We put . and . for the delimiters but, in fact, that doesn’t matter because these arguments won’t be
used in {NiceArrayWithDelims} (because the flag \g_@@_delims_bool is set to false).

3707 \NiceArrayWithDelims . .
3708 }
3709 { \endNiceArrayWithDelims }

We create the variants of the environment {NiceArrayWithDelims}.
3710 \cs_new_protected:Npn \@@_def_env:NNN #1 #2 #3
3711 {
3712 \NewDocumentEnvironment { #1 NiceArray } { }
3713 {

94

3714 \bool_gset_true:N \g_@@_delims_bool
3715 \str_if_empty:NT \g_@@_name_env_str
3716 { \str_gset:Nn \g_@@_name_env_str { #1 NiceArray } }
3717 \@@_test_if_math_mode:
3718 \NiceArrayWithDelims #2 #3
3719 }
3720 { \endNiceArrayWithDelims }
3721 }

3722 \@@_def_env:NNN p ()
3723 \@@_def_env:NNN b []
3724 \@@_def_env:NNN B \{ \}
3725 \@@_def_env:NNN v \vert \vert
3726 \@@_def_env:NNN V \Vert \Vert

13 The environment {NiceMatrix} and its variants

3727 \cs_new_protected:Npn \@@_begin_of_NiceMatrix:nn #1 #2
3728 {
3729 \bool_set_false:N \l_@@_preamble_bool
3730 \tl_clear:N \l_tmpa_tl
3731 \bool_if:NT \l_@@_NiceMatrix_without_vlines_bool
3732 { \tl_set:Nn \l_tmpa_tl { @ { } } }
3733 \tl_put_right:Nn \l_tmpa_tl
3734 {
3735 *
3736 {
3737 \int_case:nnF \l_@@_last_col_int
3738 {
3739 { -2 } { \c@MaxMatrixCols }
3740 { -1 } { \int_eval:n { \c@MaxMatrixCols + 1 } }

The value 0 can’t occur here since we are in a matrix (which is an environment without preamble).
3741 }
3742 { \int_eval:n { \l_@@_last_col_int - 1 } }
3743 }
3744 { #2 }
3745 }
3746 \tl_set:Nn \l_tmpb_tl { \use:c { #1 NiceArray } }
3747 \exp_args:No \l_tmpb_tl \l_tmpa_tl
3748 }
3749 \cs_generate_variant:Nn \@@_begin_of_NiceMatrix:nn { n o }
3750 \clist_map_inline:nn { p , b , B , v , V }
3751 {
3752 \NewDocumentEnvironment { #1 NiceMatrix } { ! O { } }
3753 {
3754 \bool_gset_true:N \g_@@_delims_bool
3755 \str_gset:Nn \g_@@_name_env_str { #1 NiceMatrix }
3756 \int_if_zero:nT { \l_@@_last_col_int }
3757 {
3758 \bool_set_true:N \l_@@_last_col_without_value_bool
3759 \int_set:Nn \l_@@_last_col_int { -1 }
3760 }
3761 \keys_set:nn { nicematrix / NiceMatrix } { ##1 }
3762 \@@_begin_of_NiceMatrix:no { #1 } { \l_@@_columns_type_tl }
3763 }
3764 { \use:c { end #1 NiceArray } }
3765 }

We define also an environment {NiceMatrix}

95

3766 \NewDocumentEnvironment { NiceMatrix } { ! O { } }
3767 {
3768 \str_gset:Nn \g_@@_name_env_str { NiceMatrix }
3769 \int_if_zero:nT { \l_@@_last_col_int }
3770 {
3771 \bool_set_true:N \l_@@_last_col_without_value_bool
3772 \int_set:Nn \l_@@_last_col_int { -1 }
3773 }
3774 \keys_set:nn { nicematrix / NiceMatrix } { #1 }
3775 \bool_lazy_or:nnT
3776 { \clist_if_empty_p:N \l_@@_vlines_clist }
3777 { \l_@@_except_borders_bool }
3778 { \bool_set_true:N \l_@@_NiceMatrix_without_vlines_bool }
3779 \@@_begin_of_NiceMatrix:no { } { \l_@@_columns_type_tl }
3780 }
3781 { \endNiceArray }

The following command will be linked to \NotEmpty in the environments of nicematrix.
3782 \cs_new_protected:Npn \@@_NotEmpty:
3783 { \bool_gset_true:N \g_@@_not_empty_cell_bool }

14 {NiceTabular}, {NiceTabularX} and {NiceTabular*}

3784 \NewDocumentEnvironment { NiceTabular } { O { } m ! O { } }
3785 {

If the dimension \l_@@_width_dim is equal to 0 pt, that means that it has not been set by a previous
use of \NiceMatrixOptions.

3786 \dim_compare:nNnT { \l_@@_width_dim } = { \c_zero_dim }
3787 { \dim_set_eq:NN \l_@@_width_dim \linewidth }
3788 \str_gset:Nn \g_@@_name_env_str { NiceTabular }
3789 \keys_set:nn { nicematrix / NiceTabular } { #1 , #3 }
3790 \tl_if_empty:NF \l_@@_short_caption_tl
3791 {
3792 \tl_if_empty:NT \l_@@_caption_tl
3793 {
3794 \@@_error_or_warning:n { short-caption~without~caption }
3795 \tl_set_eq:NN \l_@@_caption_tl \l_@@_short_caption_tl
3796 }
3797 }
3798 \tl_if_empty:NF \l_@@_label_tl
3799 {
3800 \tl_if_empty:NT \l_@@_caption_tl
3801 { \@@_error_or_warning:n { label~without~caption } }
3802 }
3803 \NewDocumentEnvironment { TabularNote } { b }
3804 {
3805 \bool_if:NTF \l_@@_in_code_after_bool
3806 { \@@_error_or_warning:n { TabularNote~in~CodeAfter } }
3807 {
3808 \tl_if_empty:NF \g_@@_tabularnote_tl
3809 { \tl_gput_right:Nn \g_@@_tabularnote_tl { \par } }
3810 \tl_gput_right:Nn \g_@@_tabularnote_tl { ##1 }
3811 }
3812 }
3813 { }
3814 \@@_settings_for_tabular:
3815 \NiceArray { #2 }
3816 }
3817 { \endNiceArray }

3818 \cs_new_protected:Npn \@@_settings_for_tabular:
3819 {

96

3820 \bool_set_true:N \l_@@_tabular_bool
3821 \cs_set_eq:NN \@@_math_toggle: \prg_do_nothing:
3822 \cs_set_eq:NN \@@_tuning_not_tabular_begin: \prg_do_nothing:
3823 \cs_set_eq:NN \@@_tuning_not_tabular_end: \prg_do_nothing:
3824 }

3825 \NewDocumentEnvironment { NiceTabularX } { m O { } m ! O { } }
3826 {
3827 \str_gset:Nn \g_@@_name_env_str { NiceTabularX }
3828 \dim_set:Nn \l_@@_width_dim { #1 }
3829 \keys_set:nn { nicematrix / NiceTabular } { #2 , #4 }
3830 \@@_settings_for_tabular:
3831 \NiceArray { #3 }
3832 }
3833 {
3834 \endNiceArray
3835 \fp_compare:nNnT { \g_@@_total_X_weight_fp } = { \c_zero_fp }
3836 { \@@_error:n { NiceTabularX~without~X } }
3837 }

3838 \NewDocumentEnvironment { NiceTabular* } { m O { } m ! O { } }
3839 {
3840 \str_gset:Nn \g_@@_name_env_str { NiceTabular* }
3841 \dim_set:Nn \l_@@_tabular_width_dim { #1 }
3842 \keys_set:nn { nicematrix / NiceTabular } { #2 , #4 }
3843 \@@_settings_for_tabular:
3844 \NiceArray { #3 }
3845 }
3846 { \endNiceArray }

15 After the construction of the array

The following command will be used when the key rounded-corners is in force (this is the key
rounded-corners for the whole environment and not the key rounded-corners of a command
\Block).

3847 \cs_new_protected:Npn \@@_deal_with_rounded_corners:
3848 {
3849 \bool_lazy_all:nT
3850 {
3851 { \dim_compare_p:nNn { \l_@@_tab_rounded_corners_dim } > { \c_zero_dim } }
3852 { \l_@@_hvlines_bool }
3853 { ! \g_@@_delims_bool }
3854 { ! \l_@@_except_borders_bool }
3855 }
3856 {
3857 \bool_set_true:N \l_@@_except_borders_bool
3858 \clist_if_empty:NF \l_@@_corners_clist
3859 { \@@_error:n { hvlines,~rounded-corners~and~corners } }
3860 \tl_gput_right:Nn \g_@@_pre_code_after_tl
3861 {
3862 \@@_stroke_block:nnn
3863 {
3864 rounded-corners = \dim_use:N \l_@@_tab_rounded_corners_dim ,
3865 draw = \l_@@_rules_color_tl
3866 }
3867 { 1-1 }
3868 { \int_use:N \c@iRow - \int_use:N \c@jCol }
3869 }
3870 }
3871 }

97

3872 \cs_new_protected:Npn \@@_after_array:
3873 {

There was a \hook_gput_code:nnn { env / tabular / begin } { nicematrix } in the com-
mand \@@_pre_array_after_CodeBefore: in order to come back to the standard definition of
\multicolumn (in the tabulars used by the final user in the cells of our array of nicematrix) and
maybe another linked to colortbl.

3874 \hook_gremove_code:nn { env / tabular / begin } { nicematrix }
3875 \group_begin:

When the option last-col is used in the environments with explicit preambles (like {NiceArray},
{pNiceArray}, etc.) a special type of column is used at the end of the preamble in order to compose
the cells in an overlapping position (with \hbox_overlap_right:n) but (if last-col has been used),
we don’t have the number of that last column. However, we have to know that number for the
color of the potential \Vdots drawn in that last column. That’s why we fix the correct value of
\l_@@_last_col_int in that case.

3876 \bool_if:NT \g_@@_last_col_found_bool
3877 { \int_set_eq:NN \l_@@_last_col_int \g_@@_col_total_int }

If we are in an environment without preamble (like {NiceMatrix} or {pNiceMatrix}) and if the
option last-col has been used without value we also fix the real value of \l_@@_last_col_int.

3878 \bool_if:NT \l_@@_last_col_without_value_bool
3879 { \int_set_eq:NN \l_@@_last_col_int \g_@@_col_total_int }

It’s also time to give to \l_@@_last_row_int its real value.
3880 \bool_if:NT \l_@@_last_row_without_value_bool
3881 { \int_set_eq:NN \l_@@_last_row_int \g_@@_row_total_int }

3882 \tl_gput_right:Ne \g_@@_aux_tl
3883 {
3884 \seq_gset_from_clist:Nn \exp_not:N \g_@@_size_seq
3885 {
3886 \int_use:N \l_@@_first_row_int ,
3887 \int_use:N \c@iRow ,
3888 \int_use:N \g_@@_row_total_int ,
3889 \int_use:N \l_@@_first_col_int ,
3890 \int_use:N \c@jCol ,
3891 \int_use:N \g_@@_col_total_int
3892 }
3893 }

We write also the potential content of \g_@@_pos_of_blocks_seq. It will be used to recreate the
blocks with a name in the \CodeBefore and also if the command \rowcolors is used with the key
respect-blocks).

3894 \seq_if_empty:NF \g_@@_pos_of_blocks_seq
3895 {
3896 \tl_gput_right:Ne \g_@@_aux_tl
3897 {
3898 \seq_gset_from_clist:Nn \exp_not:N \g_@@_pos_of_blocks_seq
3899 { \seq_use:Nn \g_@@_pos_of_blocks_seq { , } }
3900 }
3901 }
3902 \seq_if_empty:NF \g_@@_multicolumn_cells_seq
3903 {
3904 \tl_gput_right:Ne \g_@@_aux_tl
3905 {
3906 \seq_gset_from_clist:Nn \exp_not:N \g_@@_multicolumn_cells_seq
3907 { \seq_use:Nn \g_@@_multicolumn_cells_seq { , } }
3908 \seq_gset_from_clist:Nn \exp_not:N \g_@@_multicolumn_sizes_seq
3909 { \seq_use:Nn \g_@@_multicolumn_sizes_seq { , } }
3910 }
3911 }

98

Now, you create the diagonal nodes by using the row nodes and the col nodes.
3912 \@@_create_diag_nodes:

We create the aliases using last for the nodes of the cells in the last row and the last column.
3913 \pgfpicture
3914 \@@_create_aliases_last:
3915 \str_if_empty:NF \l_@@_name_str { \@@_create_alias_nodes: }
3916 \endpgfpicture

By default, the diagonal lines will be parallelized12. There are two types of diagonals lines: the
\Ddots diagonals and the \Iddots diagonals. We have to count both types in order to know whether
a diagonal is the first of its type in the current {NiceArray} environment.

3917 \bool_if:NT \l_@@_parallelize_diags_bool
3918 {
3919 \int_gzero:N \g_@@_ddots_int
3920 \int_gzero:N \g_@@_iddots_int

The dimensions \g_@@_delta_x_one_dim and \g_@@_delta_y_one_dim will contain the ∆x and ∆y

of the first \Ddots diagonal. We have to store these values in order to draw the others \Ddots
diagonals parallel to the first one. Similarly \g_@@_delta_x_two_dim and \g_@@_delta_y_two_dim
are the ∆x and ∆y of the first \Iddots diagonal.

3921 \dim_gzero:N \g_@@_delta_x_one_dim
3922 \dim_gzero:N \g_@@_delta_y_one_dim
3923 \dim_gzero:N \g_@@_delta_x_two_dim
3924 \dim_gzero:N \g_@@_delta_y_two_dim
3925 }

3926 \bool_set_false:N \l_@@_initial_open_bool
3927 \bool_set_false:N \l_@@_final_open_bool

If the option small is used, the values \l_@@_xdots_radius_dim and \l_@@_xdots_inter_dim (used
to draw the dotted lines created by \hdottedline and \vdottedline and also for all the other dotted
lines when line-style is equal to standard, which is the initial value) are changed.

3928 \bool_if:NT \l_@@_small_bool { \@@_tuning_key_small_for_dots: }

Now, we actually draw the dotted lines (specified by \Cdots, \Vdots, etc.).
3929 \@@_draw_dotted_lines:

The following computes the “corners” (made up of empty cells) but if there is no corner to compute,
it won’t do anything. The corners are computed in \l_@@_corners_cells_clist which will contain
all the cells which are empty (and not in a block) considered in the corners of the array.

3930 \clist_if_empty:NF \l_@@_corners_clist
3931 {
3932 \bool_if:NTF \l_@@_no_cell_nodes_bool
3933 { \@@_error:n { corners~with~no-cell-nodes } }
3934 { \@@_compute_corners: }
3935 }

By design, we have computed the corners before the adjonction of \g_@@_future_pos_of_blocks_seq
is used by \EmptyRow and \EmptyColumn in the \CodeBefore.

3936 \seq_gconcat:NNN \g_@@_pos_of_blocks_seq
3937 \g_@@_pos_of_blocks_seq
3938 \g_@@_future_pos_of_blocks_seq
3939 \seq_gclear:N \g_@@_future_pos_of_blocks_seq

The sequence \g_@@_pos_of_blocks_seq must be “adjusted” (for the case where the user have
written something like \Block{1-*}).

3940 \@@_adjust_pos_of_blocks_seq:

12It’s possible to use the option parallelize-diags to disable this parallelization.

99

3941 \@@_deal_with_rounded_corners:
3942 \clist_if_empty:NF \l_@@_hlines_clist { \@@_draw_hlines: }
3943 \clist_if_empty:NF \l_@@_vlines_clist { \@@_draw_vlines: }

Now, the pre-code-after and then, the \CodeAfter.
3944 \IfPackageLoadedT { tikz }
3945 {
3946 \tikzset
3947 {
3948 every~picture / .style =
3949 {
3950 overlay ,
3951 remember~picture ,
3952 name~prefix = \@@_env: -
3953 }
3954 }
3955 }
3956 \cs_set_eq:NN \ar@ialign \@@_old_ar@ialign:
3957 \cs_set_eq:NN \SubMatrix \@@_SubMatrix
3958 \cs_set_eq:NN \UnderBrace \@@_UnderBrace
3959 \cs_set_eq:NN \OverBrace \@@_OverBrace
3960 \cs_set_eq:NN \ShowCellNames \@@_ShowCellNames
3961 \cs_set_eq:NN \TikzEveryCell \@@_TikzEveryCell
3962 \cs_set_eq:NN \line \@@_line

The LaTeX-style boolean \ifmeasuring@ is used by amsmath during the phase of measure in envi-
ronments such as {align}, etc.

3963 \legacy_if:nF { measuring@ } { \g_@@_pre_code_after_tl }
3964 \tl_gclear:N \g_@@_pre_code_after_tl

When light-syntax is used, we insert systematically a \CodeAfter in the flow. Thus, it’s possible
to have two instructions \CodeAfter and the second may be in \g_nicematrix_code_after_tl.
That’s why we set \CodeAfter to be no-op now.

3965 \cs_set_eq:NN \CodeAfter \prg_do_nothing:

We clear the list of the names of the potential \SubMatrix that will appear in the \CodeAfter
(unfortunately, that list has to be global).

3966 \seq_gclear:N \g_@@_submatrix_names_seq

The following code is a security for the case the user has used babel with the option spanish: in that
case, the characters > and < are activated and Tikz is not able to solve the problem (even with the
Tikz library babel).

3967 \int_compare:nNnT { \char_value_catcode:n { 60 } } = { 13 }
3968 { \@@_rescan_for_spanish:N \g_nicematrix_code_after_tl }

And here’s the \CodeAfter. Since the \CodeAfter may begin with an “argument” between
square brackets of the options, we extract and treat that potential “argument” with the command
\@@_CodeAfter_keys:.

3969 \bool_set_true:N \l_@@_in_code_after_bool
3970 \exp_last_unbraced:No \@@_CodeAfter_keys: \g_nicematrix_code_after_tl
3971 \scan_stop:
3972 \tl_gclear:N \g_nicematrix_code_after_tl
3973 \group_end:

\g_@@_pre_code_before_tl is for instructions in the cells of the array such as \rowcolor and
\cellcolor. These instructions will be written on the aux file to be added to the code-before
in the next run.

3974 \seq_if_empty:NF \g_@@_rowlistcolors_seq { \@@_clear_rowlistcolors_seq: }
3975 \tl_if_empty:NF \g_@@_pre_code_before_tl
3976 {
3977 \tl_gput_right:Ne \g_@@_aux_tl
3978 {
3979 \tl_gset:Nn \exp_not:N \g_@@_pre_code_before_tl

100

3980 { \exp_not:o \g_@@_pre_code_before_tl }
3981 }
3982 \tl_gclear:N \g_@@_pre_code_before_tl
3983 }
3984 \tl_if_empty:NF \g_nicematrix_code_before_tl
3985 {
3986 \tl_gput_right:Ne \g_@@_aux_tl
3987 {
3988 \tl_gset:Nn \exp_not:N \g_@@_code_before_tl
3989 { \exp_not:o \g_nicematrix_code_before_tl }
3990 }
3991 \tl_gclear:N \g_nicematrix_code_before_tl
3992 }

3993 \str_gclear:N \g_@@_name_env_str
3994 \@@_restore_iRow_jCol:

The command \CT@arc@ contains the instruction of color for the rules of the array13. This command
is used by \CT@arc@ but we use it also for compatibility with colortbl. But we want also to be able
to use color for the rules of the array when colortbl is not loaded. That’s why we do the following
instruction which is in the patch of the end of arrays done by colortbl.

3995 \cs_gset_eq:NN \CT@arc@ \@@_old_CT@arc@
3996 }

3997 \cs_new_protected:Npn \@@_tuning_key_small_for_dots:
3998 {
3999 \dim_set:Nn \l_@@_xdots_radius_dim { 0.7 \l_@@_xdots_radius_dim }
4000 \dim_set:Nn \l_@@_xdots_inter_dim { 0.55 \l_@@_xdots_inter_dim }

The dimensions \l_@@_xdots_shorten_start_dim and \l_@@_xdots_shorten_start_dim corre-
spond to the options xdots/shorten-start and xdots/shorten-end available to the user.

4001 \dim_set:Nn \l_@@_xdots_shorten_start_dim
4002 { 0.6 \l_@@_xdots_shorten_start_dim }
4003 \dim_set:Nn \l_@@_xdots_shorten_end_dim
4004 { 0.6 \l_@@_xdots_shorten_end_dim }
4005 }

The following command will extract the potential options (between square brackets) at the begin-
ning of the \CodeAfter (that is to say, when \CodeAfter is used, the options of that “command”
\CodeAfter). Idem for the \CodeBefore.

4006 \NewDocumentCommand \@@_CodeAfter_keys: { O { } }
4007 { \keys_set:nn { nicematrix / CodeAfter } { #1 } }

4008 \cs_new_protected:Npn \@@_create_alias_nodes:
4009 {
4010 \int_step_inline:nn { \c@iRow }
4011 {
4012 \pgfnodealias
4013 { \l_@@_name_str - ##1 - last }
4014 { \@@_env: - ##1 - \int_use:N \c@jCol }
4015 }
4016 \int_step_inline:nn { \c@jCol }
4017 {
4018 \pgfnodealias
4019 { \l_@@_name_str - last - ##1 }
4020 { \@@_env: - \int_use:N \c@iRow - ##1 }
4021 }
4022 \pgfnodealias

13e.g. \color[rgb]{0.5,0.5,0}

101

4023 { \l_@@_name_str - last - last }
4024 { \@@_env: - \int_use:N \c@iRow - \int_use:N \c@jCol }
4025 }

We remind that the first mandatory argument of the command \Block is the size of the block with
the special format i-j. However, the user is allowed to omit i or j (or both). This will be interpreted
as: the last row (resp. column) of the block will be the last row (resp. column) of the block
(without the potential exterior row—resp. column—of the array). By convention, this is stored in
\g_@@_pos_of_blocks_seq (and \g_@@_blocks_seq) as a number of rows (resp. columns) for the
block equal to 100. It’s possible, after the construction of the array, to replace these values by the
correct ones (since we know the number of rows and columns of the array).

4026 \cs_new_protected:Npn \@@_adjust_pos_of_blocks_seq:
4027 {
4028 \seq_gset_map_e:NNn \g_@@_pos_of_blocks_seq \g_@@_pos_of_blocks_seq
4029 { \@@_adjust_pos_of_blocks_seq_i:nnnnn ##1 }
4030 }

The following command must not be protected.
4031 \cs_new:Npn \@@_adjust_pos_of_blocks_seq_i:nnnnn #1 #2 #3 #4 #5
4032 {
4033 { #1 }
4034 { #2 }
4035 {
4036 \int_compare:nNnTF { #3 } > { 98 }
4037 { \int_use:N \c@iRow }
4038 { #3 }
4039 }
4040 {
4041 \int_compare:nNnTF { #4 } > { 98 }
4042 { \int_use:N \c@jCol }
4043 { #4 }
4044 }
4045 { #5 }
4046 }

We recall that, when externalization is used, \tikzpicture and \endtikzpicture (or \pgfpicture
and \endpgfpicture) must be directly “visible”. That’s why we have to define the adequate version
of \@@_draw_dotted_lines: whether Tikz is loaded or not (in that case, only pgf is loaded).

4047 \hook_gput_code:nnn { begindocument } { . }
4048 {
4049 \cs_new_protected:Npe \@@_draw_dotted_lines:
4050 {
4051 \c_@@_pgfortikzpicture_tl
4052 \@@_draw_dotted_lines_i:
4053 \c_@@_endpgfortikzpicture_tl
4054 }
4055 }

The following command must be protected because it will appear in the construction of the command
\@@_draw_dotted_lines:.

4056 \cs_new_protected:Npn \@@_draw_dotted_lines_i:
4057 {
4058 \pgfrememberpicturepositiononpagetrue
4059 \pgf@relevantforpicturesizefalse
4060 \g_@@_HVdotsfor_lines_tl
4061 \g_@@_Vdots_lines_tl
4062 \g_@@_Ddots_lines_tl
4063 \g_@@_Iddots_lines_tl
4064 \g_@@_Cdots_lines_tl
4065 \g_@@_Ldots_lines_tl
4066 }

102

4067 \cs_new_protected:Npn \@@_restore_iRow_jCol:
4068 {
4069 \cs_if_exist:NT \theiRow { \int_gset_eq:NN \c@iRow \l_@@_old_iRow_int }
4070 \cs_if_exist:NT \thejCol { \int_gset_eq:NN \c@jCol \l_@@_old_jCol_int }
4071 }

We define a new pgf shape for the diag nodes because we want to provide an anchor called .5 for
those nodes.

4072 \pgfdeclareshape { @@_diag_node }
4073 {
4074 \savedanchor { \five }
4075 {
4076 \dim_gset_eq:NN \pgf@x \l_tmpa_dim
4077 \dim_gset_eq:NN \pgf@y \l_tmpb_dim
4078 }
4079 \anchor { 5 } { \five }
4080 \anchor { center } { \pgfpointorigin }
4081 \anchor { 1 } { \five \pgf@x = 0.2 \pgf@x \pgf@y = 0.2 \pgf@y }
4082 \anchor { 2 } { \five \pgf@x = 0.4 \pgf@x \pgf@y = 0.4 \pgf@y }
4083 \anchor { 25 } { \five \pgf@x = 0.5 \pgf@x \pgf@y = 0.5 \pgf@y }
4084 \anchor { 3 } { \five \pgf@x = 0.6 \pgf@x \pgf@y = 0.6 \pgf@y }
4085 \anchor { 4 } { \five \pgf@x = 0.8 \pgf@x \pgf@y = 0.8 \pgf@y }
4086 \anchor { 6 } { \five \pgf@x = 1.2 \pgf@x \pgf@y = 1.2 \pgf@y }
4087 \anchor { 7 } { \five \pgf@x = 1.4 \pgf@x \pgf@y = 1.4 \pgf@y }
4088 \anchor { 75 } { \five \pgf@x = 1.5 \pgf@x \pgf@y = 1.5 \pgf@y }
4089 \anchor { 8 } { \five \pgf@x = 1.6 \pgf@x \pgf@y = 1.6 \pgf@y }
4090 \anchor { 9 } { \five \pgf@x = 1.8 \pgf@x \pgf@y = 1.8 \pgf@y }
4091 }

The following command creates the diagonal nodes (in fact, if the matrix is not a square matrix, not
all the nodes are on the diagonal).

4092 \cs_new_protected:Npn \@@_create_diag_nodes:
4093 {
4094 \pgfpicture
4095 \pgfrememberpicturepositiononpagetrue
4096 \int_step_inline:nn { \int_max:nn { \c@iRow } { \c@jCol } }
4097 {
4098 \@@_qpoint:n { col - \int_min:nn { ##1 } { \c@jCol + 1 } }
4099 \dim_set_eq:NN \l_tmpa_dim \pgf@x
4100 \@@_qpoint:n { row - \int_min:nn { ##1 } { \c@iRow + 1 } }
4101 \dim_set_eq:NN \l_tmpb_dim \pgf@y
4102 \@@_qpoint:n { col - \int_min:nn { ##1 + 1 } { \c@jCol + 1 } }
4103 \dim_set_eq:NN \l_@@_tmpc_dim \pgf@x
4104 \@@_qpoint:n { row - \int_min:nn { ##1 + 1 } { \c@iRow + 1 } }
4105 \dim_set_eq:NN \l_@@_tmpd_dim \pgf@y
4106 \pgftransformshift { \pgfpoint \l_tmpa_dim \l_tmpb_dim }

Now, \l_tmpa_dim and \l_tmpb_dim become the width and the height of the node (of shape
@@_diag_node) that we will construct.

4107 \dim_set:Nn \l_tmpa_dim { (\l_@@_tmpc_dim - \l_tmpa_dim) / 2 }
4108 \dim_set:Nn \l_tmpb_dim { (\l_@@_tmpd_dim - \l_tmpb_dim) / 2 }
4109 \pgfnode { @@_diag_node } { center } { } { \@@_env: - ##1 } { }
4110 \str_if_empty:NF \l_@@_name_str
4111 { \pgfnodealias { \l_@@_name_str - ##1 } { \@@_env: - ##1 } }
4112 }

Now, the last node. Of course, that is only a coordinate because there is not .5 anchor for that
node.

4113 \int_set:Nn \l_tmpa_int { \int_max:nn { \c@iRow } { \c@jCol } + 1 }
4114 \@@_qpoint:n { row - \int_min:nn { \l_tmpa_int } { \c@iRow + 1 } }
4115 \dim_set_eq:NN \l_tmpa_dim \pgf@y
4116 \@@_qpoint:n { col - \int_min:nn { \l_tmpa_int } { \c@jCol + 1 } }
4117 \pgfcoordinate

103

4118 { \@@_env: - \int_use:N \l_tmpa_int } { \pgfpoint \pgf@x \l_tmpa_dim }
4119 \pgfnodealias
4120 { \@@_env: - last }
4121 { \@@_env: - \int_eval:n { \int_max:nn { \c@iRow } { \c@jCol } + 1 } }
4122 \str_if_empty:NF \l_@@_name_str
4123 {
4124 \pgfnodealias
4125 { \l_@@_name_str - \int_use:N \l_tmpa_int }
4126 { \@@_env: - \int_use:N \l_tmpa_int }
4127 \pgfnodealias
4128 { \l_@@_name_str - last }
4129 { \@@_env: - last }
4130 }
4131 \endpgfpicture
4132 }

16 We draw the dotted lines

A dotted line will be said open in one of its extremities when it stops on the edge of the matrix and
closed otherwise. In the following matrix, the dotted line is closed on its left extremity and open on
its right. a+ b+ c a+ b a

a
a a+ b a+ b+ c


The command \@@_find_extremities_of_line:nnnn takes four arguments:

• the first argument is the row of the cell where the command was issued;

• the second argument is the column of the cell where the command was issued;

• the third argument is the x-value of the orientation vector of the line;

• the fourth argument is the y-value of the orientation vector of the line.

This command computes:

• \l_@@_initial_i_int and \l_@@_initial_j_int which are the coordinates of one extremity
of the line;

• \l_@@_final_i_int and \l_@@_final_j_int which are the coordinates of the other extremity
of the line;

• \l_@@_initial_open_bool and \l_@@_final_open_bool to indicate whether the extremities
are open or not.

4133 \cs_new_protected:Npn \@@_find_extremities_of_line:nnnn #1 #2 #3 #4
4134 {

First, we declare the current cell as “dotted” because we forbide intersections of dotted lines.
4135 \cs_set_nopar:cpn { @@ _ dotted _ #1 - #2 } { }

Initialization of variables.
4136 \int_set:Nn \l_@@_initial_i_int { #1 }
4137 \int_set:Nn \l_@@_initial_j_int { #2 }
4138 \int_set:Nn \l_@@_final_i_int { #1 }
4139 \int_set:Nn \l_@@_final_j_int { #2 }

104

We will do two loops: one when determining the initial cell and the other when determining the final
cell. The boolean \l_@@_stop_loop_bool will be used to control these loops. In the first loop, we
search the “final” extremity of the line.

4140 \bool_set_false:N \l_@@_stop_loop_bool
4141 \bool_do_until:Nn \l_@@_stop_loop_bool
4142 {
4143 \int_add:Nn \l_@@_final_i_int { #3 }
4144 \int_add:Nn \l_@@_final_j_int { #4 }
4145 \bool_set_false:N \l_@@_final_open_bool

We test if we are still in the matrix. Since this is the core of the loop, we optimize the code by using
a TeX-style of conditionals.

4146 \if_int_compare:w \l_@@_final_i_int > \l_@@_row_max_int
4147 \if_int_compare:w #3 = \c_one_int
4148 \bool_set_true:N \l_@@_final_open_bool
4149 \else:
4150 \if_int_compare:w \l_@@_final_j_int > \l_@@_col_max_int
4151 \bool_set_true:N \l_@@_final_open_bool
4152 \fi:
4153 \fi:
4154 \else:
4155 \if_int_compare:w \l_@@_final_j_int < \l_@@_col_min_int
4156 \if_int_compare:w #4 = -1
4157 \bool_set_true:N \l_@@_final_open_bool
4158 \fi:
4159 \else:
4160 \if_int_compare:w \l_@@_final_j_int > \l_@@_col_max_int
4161 \if_int_compare:w #4 = \c_one_int
4162 \bool_set_true:N \l_@@_final_open_bool
4163 \fi:
4164 \fi:
4165 \fi:
4166 \fi:

4167 \bool_if:NTF \l_@@_final_open_bool

If we are outside the matrix, we have found the extremity of the dotted line and it’s an open extremity.
4168 {

We do a step backwards.
4169 \int_sub:Nn \l_@@_final_i_int { #3 }
4170 \int_sub:Nn \l_@@_final_j_int { #4 }
4171 \bool_set_true:N \l_@@_stop_loop_bool
4172 }

If we are in the matrix, we test whether the cell is empty. If it’s not the case, we stop the loop because
we have found the correct values for \l_@@_final_i_int and \l_@@_final_j_int.

4173 {
4174 \cs_if_exist:cTF
4175 {
4176 @@ _ dotted _
4177 \int_use:N \l_@@_final_i_int -
4178 \int_use:N \l_@@_final_j_int
4179 }
4180 {
4181 \int_sub:Nn \l_@@_final_i_int { #3 }
4182 \int_sub:Nn \l_@@_final_j_int { #4 }
4183 \bool_set_true:N \l_@@_final_open_bool
4184 \bool_set_true:N \l_@@_stop_loop_bool
4185 }
4186 {
4187 \cs_if_exist:cTF
4188 {
4189 pgf @ sh @ ns @ \@@_env:
4190 - \int_use:N \l_@@_final_i_int

105

4191 - \int_use:N \l_@@_final_j_int
4192 }
4193 { \bool_set_true:N \l_@@_stop_loop_bool }

If the case is empty, we declare that the cell as non-empty. Indeed, we will draw a dotted line and the
cell will be on that dotted line. All the cells of a dotted line have to be marked as “dotted” because
we don’t want intersections between dotted lines. We recall that the research of the extremities of
the lines are all done in the same TeX group (the group of the environment), even though, when the
extremities are found, each line is drawn in a TeX group that we will open for the options of the line.

4194 {
4195 \cs_set_nopar:cpn
4196 {
4197 @@ _ dotted _
4198 \int_use:N \l_@@_final_i_int -
4199 \int_use:N \l_@@_final_j_int
4200 }
4201 { }
4202 }
4203 }
4204 }
4205 }

For \l_@@_initial_i_int and \l_@@_initial_j_int the programmation is similar to the previous
one.

4206 \bool_set_false:N \l_@@_stop_loop_bool

The following line of code is only for efficiency in the following loop.
4207 \int_set:Nn \l_tmpa_int { \l_@@_col_min_int - 1 }

4208 \bool_do_until:Nn \l_@@_stop_loop_bool
4209 {
4210 \int_sub:Nn \l_@@_initial_i_int { #3 }
4211 \int_sub:Nn \l_@@_initial_j_int { #4 }
4212 \bool_set_false:N \l_@@_initial_open_bool

We test if we are still in the matrix. Since this is the core of the loop, we optimize the code by using
a TeX-style of conditionals.

4213 \if_int_compare:w \l_@@_initial_i_int < \l_@@_row_min_int
4214 \if_int_compare:w #3 = \c_one_int
4215 \bool_set_true:N \l_@@_initial_open_bool
4216 \else:

\l_tmpa_int contains \l_@@_col_min_int - 1 (only for efficiency).
4217 \if_int_compare:w \l_@@_initial_j_int = \l_tmpa_int
4218 \bool_set_true:N \l_@@_initial_open_bool
4219 \fi:
4220 \fi:
4221 \else:
4222 \if_int_compare:w \l_@@_initial_j_int < \l_@@_col_min_int
4223 \if_int_compare:w #4 = \c_one_int
4224 \bool_set_true:N \l_@@_initial_open_bool
4225 \fi:
4226 \else:
4227 \if_int_compare:w \l_@@_initial_j_int > \l_@@_col_max_int
4228 \if_int_compare:w #4 = -1
4229 \bool_set_true:N \l_@@_initial_open_bool
4230 \fi:
4231 \fi:
4232 \fi:
4233 \fi:

106

4234 \bool_if:NTF \l_@@_initial_open_bool
4235 {
4236 \int_add:Nn \l_@@_initial_i_int { #3 }
4237 \int_add:Nn \l_@@_initial_j_int { #4 }
4238 \bool_set_true:N \l_@@_stop_loop_bool
4239 }
4240 {
4241 \cs_if_exist:cTF
4242 {
4243 @@ _ dotted _
4244 \int_use:N \l_@@_initial_i_int -
4245 \int_use:N \l_@@_initial_j_int
4246 }
4247 {
4248 \int_add:Nn \l_@@_initial_i_int { #3 }
4249 \int_add:Nn \l_@@_initial_j_int { #4 }
4250 \bool_set_true:N \l_@@_initial_open_bool
4251 \bool_set_true:N \l_@@_stop_loop_bool
4252 }
4253 {
4254 \cs_if_exist:cTF
4255 {
4256 pgf @ sh @ ns @ \@@_env:
4257 - \int_use:N \l_@@_initial_i_int
4258 - \int_use:N \l_@@_initial_j_int
4259 }
4260 { \bool_set_true:N \l_@@_stop_loop_bool }
4261 {
4262 \cs_set_nopar:cpn
4263 {
4264 @@ _ dotted _
4265 \int_use:N \l_@@_initial_i_int -
4266 \int_use:N \l_@@_initial_j_int
4267 }
4268 { }
4269 }
4270 }
4271 }
4272 }

We remind the rectangle described by all the dotted lines in order to respect the corresponding virtual
“block” when drawing the horizontal and vertical rules.

4273 \seq_gput_right:Ne \g_@@_pos_of_xdots_seq
4274 {
4275 { \int_use:N \l_@@_initial_i_int }

Be careful: with \Iddots, \l_@@_final_j_int is inferior to \l_@@_initial_j_int. That’s why we
use \int_min:nn and \int_max:nn.

4276 { \int_min:nn { \l_@@_initial_j_int } { \l_@@_final_j_int } }
4277 { \int_use:N \l_@@_final_i_int }
4278 { \int_max:nn { \l_@@_initial_j_int } { \l_@@_final_j_int } }
4279 { }
4280 }
4281 }

If the final user uses the key xdots/shorten in \NiceMatrixOptions or at the level of an environment
(such as {pNiceMatrix}, etc.), only the so called “closed extremities” will be shortened by that key.
The following command will be used after the detection of the extremities of a dotted line (hence
at a time when we known whether the extremities are closed or open) but before the analysis of
the keys of the individual command \Cdots, \Vdots. Hence, the keys shorten, shorten-start and
shorten-end of that individual command will be applied.

4282 \cs_new_protected:Npn \@@_open_shorten:
4283 {

107

4284 \bool_if:NT \l_@@_initial_open_bool
4285 { \dim_zero:N \l_@@_xdots_shorten_start_dim }
4286 \bool_if:NT \l_@@_final_open_bool
4287 { \dim_zero:N \l_@@_xdots_shorten_end_dim }
4288 }

The following command (when it will be written) will set the four counters \l_@@_row_min_int,
\l_@@_row_max_int, \l_@@_col_min_int and \l_@@_col_max_int to the intersections of the sub-
matrices which contains the cell of row #1 and column #2. As of now, it’s only the whole array
(excepted exterior rows and columns).

4289 \cs_new_protected:Npn \@@_adjust_to_submatrix:nn #1 #2
4290 {
4291 \int_set_eq:NN \l_@@_row_min_int \c_one_int
4292 \int_set_eq:NN \l_@@_col_min_int \c_one_int
4293 \int_set_eq:NN \l_@@_row_max_int \c@iRow
4294 \int_set_eq:NN \l_@@_col_max_int \c@jCol

We do a loop over all the submatrices specified in the code-before. We have stored the position of
all those submatrices in \g_@@_submatrix_seq.

4295 \seq_if_empty:NF \g_@@_submatrix_seq
4296 {
4297 \seq_map_inline:Nn \g_@@_submatrix_seq
4298 { \@@_adjust_to_submatrix:nnnnnn { #1 } { #2 } ##1 }
4299 }
4300 }

#1 and #2 are the numbers of row and columns of the cell where the command of dotted line (ex.:
\Vdots) has been issued. #3, #4, #5 and #6 are the specification (in i and j) of the submatrix we are
analyzing.
Here is the programmation of that command with the the standard syntax of L3.

\cs_new_protected:Npn \@@_adjust_to_submatrix:nnnnnn #1 #2 #3 #4 #5 #6
{
\bool_if:nT
{
\int_compare_p:n { #3 <= #1 <= #5 }
&&
\int_compare_p:n { #4 <= #2 <= #6 }

}
{
\int_set:Nn \l_@@_row_min_int { \int_max:nn \l_@@_row_min_int { #3 } }
\int_set:Nn \l_@@_col_min_int { \int_max:nn \l_@@_col_min_int { #4 } }
\int_set:Nn \l_@@_row_max_int { \int_min:nn \l_@@_row_max_int { #5 } }
\int_set:Nn \l_@@_col_max_int { \int_min:nn \l_@@_col_max_int { #6 } }

}
}

However, for efficiency, we will use the following version.
4301 \cs_new_protected:Npn \@@_adjust_to_submatrix:nnnnnn #1 #2 #3 #4 #5 #6
4302 {
4303 \if_int_compare:w #3 > #1
4304 \else:
4305 \if_int_compare:w #1 > #5
4306 \else:
4307 \if_int_compare:w #4 > #2
4308 \else:
4309 \if_int_compare:w #2 > #6
4310 \else:
4311 \if_int_compare:w \l_@@_row_min_int < #3 \l_@@_row_min_int = #3 \fi:
4312 \if_int_compare:w \l_@@_col_min_int < #4 \l_@@_col_min_int = #4 \fi:
4313 \if_int_compare:w \l_@@_row_max_int > #5 \l_@@_row_max_int = #5 \fi:
4314 \if_int_compare:w \l_@@_col_max_int > #6 \l_@@_col_max_int = #6 \fi:

108

4315 \fi:
4316 \fi:
4317 \fi:
4318 \fi:
4319 }

4320 \cs_new_protected:Npn \@@_set_initial_coords:
4321 {
4322 \dim_set_eq:NN \l_@@_x_initial_dim \pgf@x
4323 \dim_set_eq:NN \l_@@_y_initial_dim \pgf@y
4324 }
4325 \cs_new_protected:Npn \@@_set_final_coords:
4326 {
4327 \dim_set_eq:NN \l_@@_x_final_dim \pgf@x
4328 \dim_set_eq:NN \l_@@_y_final_dim \pgf@y
4329 }
4330 \cs_new_protected:Npn \@@_set_initial_coords_from_anchor:n #1
4331 {
4332 \pgfpointanchor
4333 {
4334 \@@_env:
4335 - \int_use:N \l_@@_initial_i_int
4336 - \int_use:N \l_@@_initial_j_int
4337 }
4338 { #1 }
4339 \@@_set_initial_coords:
4340 }
4341 \cs_new_protected:Npn \@@_set_final_coords_from_anchor:n #1
4342 {
4343 \pgfpointanchor
4344 {
4345 \@@_env:
4346 - \int_use:N \l_@@_final_i_int
4347 - \int_use:N \l_@@_final_j_int
4348 }
4349 { #1 }
4350 \@@_set_final_coords:
4351 }

4352 \cs_new_protected:Npn \@@_open_x_initial_dim:
4353 {
4354 \dim_set_eq:NN \l_@@_x_initial_dim \c_max_dim
4355 \int_step_inline:nnn { \l_@@_first_row_int } { \g_@@_row_total_int }
4356 {
4357 \cs_if_exist:cT
4358 { pgf @ sh @ ns @ \@@_env: - ##1 - \int_use:N \l_@@_initial_j_int }
4359 {
4360 \pgfpointanchor
4361 { \@@_env: - ##1 - \int_use:N \l_@@_initial_j_int }
4362 { west }
4363 \dim_set:Nn \l_@@_x_initial_dim
4364 { \dim_min:nn { \l_@@_x_initial_dim } { \pgf@x } }
4365 }
4366 }

If, in fact, all the cells of the column are empty (no PGF/Tikz nodes in those cells).
4367 \dim_compare:nNnT { \l_@@_x_initial_dim } = { \c_max_dim }
4368 {
4369 \@@_qpoint:n { col - \int_use:N \l_@@_initial_j_int }
4370 \dim_set_eq:NN \l_@@_x_initial_dim \pgf@x
4371 \dim_add:Nn \l_@@_x_initial_dim \col@sep
4372 }
4373 }

109

4374 \cs_new_protected:Npn \@@_open_x_final_dim:
4375 {
4376 \dim_set:Nn \l_@@_x_final_dim { - \c_max_dim }
4377 \int_step_inline:nnn { \l_@@_first_row_int } { \g_@@_row_total_int }
4378 {
4379 \cs_if_exist:cT
4380 { pgf @ sh @ ns @ \@@_env: - ##1 - \int_use:N \l_@@_final_j_int }
4381 {
4382 \pgfpointanchor
4383 { \@@_env: - ##1 - \int_use:N \l_@@_final_j_int }
4384 { east }
4385 \dim_compare:nNnT { \pgf@x } > { \l_@@_x_final_dim }
4386 { \dim_set_eq:NN \l_@@_x_final_dim \pgf@x }
4387 }
4388 }

If, in fact, all the cells of the columns are empty (no PGF/Tikz nodes in those cells).
4389 \dim_compare:nNnT { \l_@@_x_final_dim } = { - \c_max_dim }
4390 {
4391 \@@_qpoint:n { col - \int_eval:n { \l_@@_final_j_int + 1 } }
4392 \dim_set_eq:NN \l_@@_x_final_dim \pgf@x
4393 \dim_sub:Nn \l_@@_x_final_dim \col@sep
4394 }
4395 }

The first and the second arguments are the coordinates of the cell where the command has been
issued. The third argument is the list of the options.

4396 \cs_new_protected:Npn \@@_draw_Ldots:nnn #1 #2 #3
4397 {
4398 \@@_adjust_to_submatrix:nn { #1 } { #2 }
4399 \cs_if_free:cT { @@ _ dotted _ #1 - #2 }
4400 {
4401 \@@_find_extremities_of_line:nnnn { #1 } { #2 } 0 1

The previous command may have changed the current environment by marking some cells as “dotted”,
but, fortunately, it is outside the group for the options of the line.

4402 \bool_if:NT \g_@@_aux_found_bool
4403 {
4404 \group_begin:
4405 \@@_open_shorten:
4406 \int_if_zero:nTF { #1 }
4407 { \color { nicematrix-first-row } }
4408 {

We remind that, when there is a “last row” \l_@@_last_row_int will always be (after the construction
of the array) the number of that “last row” even if the option last-row has been used without value.

4409 \int_compare:nNnT { #1 } = { \l_@@_last_row_int }
4410 { \color { nicematrix-last-row } }
4411 }
4412 \keys_set:nn { nicematrix / xdots } { #3 }
4413 \@@_color:o \l_@@_xdots_color_tl
4414 \@@_actually_draw_Ldots:
4415 \group_end:
4416 }
4417 }
4418 }

The command \@@_actually_draw_Ldots: has the following implicit arguments:

• \l_@@_initial_i_int

• \l_@@_initial_j_int

• \l_@@_initial_open_bool

110

• \l_@@_final_i_int

• \l_@@_final_j_int

• \l_@@_final_open_bool.

The following function is also used by \Hdotsfor.
4419 \cs_new_protected:Npn \@@_actually_draw_Ldots:
4420 {
4421 \bool_if:NTF \l_@@_initial_open_bool
4422 {
4423 \@@_open_x_initial_dim:
4424 \@@_qpoint:n { row - \int_use:N \l_@@_initial_i_int - base }
4425 \dim_set_eq:NN \l_@@_y_initial_dim \pgf@y
4426 }
4427 { \@@_set_initial_coords_from_anchor:n { base~east } }
4428 \bool_if:NTF \l_@@_final_open_bool
4429 {
4430 \@@_open_x_final_dim:
4431 \@@_qpoint:n { row - \int_use:N \l_@@_final_i_int - base }
4432 \dim_set_eq:NN \l_@@_y_final_dim \pgf@y
4433 }
4434 { \@@_set_final_coords_from_anchor:n { base~west } }

Now the case of a \Hdotsfor (or when there is only a \Ldots) in the “last row” (that case will
probably arise when the final user draws an arrow to indicate the number of columns of the matrix).
In the “first row”, we don’t need any adjustment.

4435 \bool_lazy_all:nTF
4436 {
4437 \l_@@_initial_open_bool
4438 \l_@@_final_open_bool
4439 { \int_compare_p:nNn { \l_@@_initial_i_int } = { \l_@@_last_row_int } }
4440 }
4441 {
4442 \dim_add:Nn \l_@@_y_initial_dim \c_@@_shift_Ldots_last_row_dim
4443 \dim_add:Nn \l_@@_y_final_dim \c_@@_shift_Ldots_last_row_dim
4444 }

We raise the line of a quantity equal to the radius of the dots because we want the dots really “on”
the line of texte. Of course, maybe we should not do that when the option line-style is used (?).

4445 {
4446 \dim_add:Nn \l_@@_y_initial_dim \l_@@_xdots_radius_dim
4447 \dim_add:Nn \l_@@_y_final_dim \l_@@_xdots_radius_dim
4448 }
4449 \@@_draw_line:
4450 }

The first and the second arguments are the coordinates of the cell where the command has been
issued. The third argument is the list of the options.

4451 \cs_new_protected:Npn \@@_draw_Cdots:nnn #1 #2 #3
4452 {
4453 \@@_adjust_to_submatrix:nn { #1 } { #2 }
4454 \cs_if_free:cT { @@ _ dotted _ #1 - #2 }
4455 {
4456 \@@_find_extremities_of_line:nnnn { #1 } { #2 } { 0 } { 1 }

The previous command may have changed the current environment by marking some cells as “dotted”,
but, fortunately, it is outside the group for the options of the line.

4457 \bool_if:NT \g_@@_aux_found_bool
4458 {
4459 \group_begin:
4460 \@@_open_shorten:
4461 \int_if_zero:nTF { #1 }
4462 { \color { nicematrix-first-row } }
4463 {

111

We remind that, when there is a “last row” \l_@@_last_row_int will always be (after the construction
of the array) the number of that “last row” even if the option last-row has been used without value.

4464 \int_compare:nNnT { #1 } = { \l_@@_last_row_int }
4465 { \color { nicematrix-last-row } }
4466 }
4467 \keys_set:nn { nicematrix / xdots } { #3 }
4468 \@@_color:o \l_@@_xdots_color_tl
4469 \@@_actually_draw_Cdots:
4470 \group_end:
4471 }
4472 }
4473 }

The command \@@_actually_draw_Cdots: has the following implicit arguments:

• \l_@@_initial_i_int

• \l_@@_initial_j_int

• \l_@@_initial_open_bool

• \l_@@_final_i_int

• \l_@@_final_j_int

• \l_@@_final_open_bool.

4474 \cs_new_protected:Npn \@@_actually_draw_Cdots:
4475 {
4476 \bool_if:NTF \l_@@_initial_open_bool
4477 { \@@_open_x_initial_dim: }
4478 { \@@_set_initial_coords_from_anchor:n { mid~east } }
4479 \bool_if:NTF \l_@@_final_open_bool
4480 { \@@_open_x_final_dim: }
4481 { \@@_set_final_coords_from_anchor:n { mid~west } }
4482 \bool_lazy_and:nnTF
4483 { \l_@@_initial_open_bool }
4484 { \l_@@_final_open_bool }
4485 {
4486 \@@_qpoint:n { row - \int_use:N \l_@@_initial_i_int }
4487 \dim_set_eq:NN \l_tmpa_dim \pgf@y
4488 \@@_qpoint:n { row - \int_eval:n { \l_@@_initial_i_int + 1 } }
4489 \dim_set:Nn \l_@@_y_initial_dim { (\l_tmpa_dim + \pgf@y) / 2 }
4490 \dim_set_eq:NN \l_@@_y_final_dim \l_@@_y_initial_dim
4491 }
4492 {
4493 \bool_if:NT \l_@@_initial_open_bool
4494 { \dim_set_eq:NN \l_@@_y_initial_dim \l_@@_y_final_dim }
4495 \bool_if:NT \l_@@_final_open_bool
4496 { \dim_set_eq:NN \l_@@_y_final_dim \l_@@_y_initial_dim }
4497 }
4498 \@@_draw_line:
4499 }

4500 \cs_new_protected:Npn \@@_open_y_initial_dim:
4501 {
4502 \dim_set:Nn \l_@@_y_initial_dim { - \c_max_dim }
4503 \int_step_inline:nnn { \l_@@_first_col_int } { \g_@@_col_total_int }
4504 {
4505 \cs_if_exist:cT
4506 { pgf @ sh @ ns @ \@@_env: - \int_use:N \l_@@_initial_i_int - ##1 }
4507 {
4508 \pgfpointanchor
4509 { \@@_env: - \int_use:N \l_@@_initial_i_int - ##1 }
4510 { north }

112

4511 \dim_compare:nNnT { \pgf@y } > { \l_@@_y_initial_dim }
4512 { \dim_set_eq:NN \l_@@_y_initial_dim \pgf@y }
4513 }
4514 }
4515 \dim_compare:nNnT { \l_@@_y_initial_dim } = { - \c_max_dim }
4516 {
4517 \@@_qpoint:n { row - \int_use:N \l_@@_initial_i_int - base }
4518 \dim_set:Nn \l_@@_y_initial_dim
4519 {
4520 \fp_to_dim:n
4521 {
4522 \pgf@y
4523 + (\box_ht:N \strutbox + \extrarowheight) * \arraystretch
4524 }
4525 }
4526 }
4527 }

4528 \cs_new_protected:Npn \@@_open_y_final_dim:
4529 {
4530 \dim_set_eq:NN \l_@@_y_final_dim \c_max_dim
4531 \int_step_inline:nnn { \l_@@_first_col_int } { \g_@@_col_total_int }
4532 {
4533 \cs_if_exist:cT
4534 { pgf @ sh @ ns @ \@@_env: - \int_use:N \l_@@_final_i_int - ##1 }
4535 {
4536 \pgfpointanchor
4537 { \@@_env: - \int_use:N \l_@@_final_i_int - ##1 }
4538 { south }
4539 \dim_compare:nNnT { \pgf@y } < { \l_@@_y_final_dim }
4540 { \dim_set_eq:NN \l_@@_y_final_dim \pgf@y }
4541 }
4542 }
4543 \dim_compare:nNnT { \l_@@_y_final_dim } = { \c_max_dim }
4544 {
4545 \@@_qpoint:n { row - \int_use:N \l_@@_final_i_int - base }
4546 \dim_set:Nn \l_@@_y_final_dim
4547 { \fp_to_dim:n { \pgf@y - (\box_dp:N \strutbox) * \arraystretch } }
4548 }
4549 }

The first and the second arguments are the coordinates of the cell where the command has been
issued. The third argument is the list of the options.

4550 \cs_new_protected:Npn \@@_draw_Vdots:nnn #1 #2 #3
4551 {
4552 \@@_adjust_to_submatrix:nn { #1 } { #2 }
4553 \cs_if_free:cT { @@ _ dotted _ #1 - #2 }
4554 {
4555 \@@_find_extremities_of_line:nnnn { #1 } { #2 } { 1 } { 0 }

The previous command may have changed the current environment by marking some cells as “dotted”,
but, fortunately, it is outside the group for the options of the line.

4556 \bool_if:NT \g_@@_aux_found_bool
4557 {
4558 \group_begin:
4559 \@@_open_shorten:
4560 \int_if_zero:nTF { #2 }
4561 { \color { nicematrix-first-col } }
4562 {
4563 \int_compare:nNnT { #2 } = { \l_@@_last_col_int }
4564 { \color { nicematrix-last-col } }
4565 }
4566 \keys_set:nn { nicematrix / xdots } { #3 }
4567 \@@_color:o \l_@@_xdots_color_tl
4568 \bool_if:NTF \l_@@_Vbrace_bool

113

4569 { \@@_actually_draw_Vbrace: }
4570 { \@@_actually_draw_Vdots: }
4571 \group_end:
4572 }
4573 }
4574 }

The following function is used by regular calls of \Vdots or \Vdotsfor but not by \Vbrace.
The command \@@_actually_draw_Vdots: has the following implicit arguments:

• \l_@@_initial_i_int

• \l_@@_initial_j_int

• \l_@@_initial_open_bool

• \l_@@_final_i_int

• \l_@@_final_j_int

• \l_@@_final_open_bool.

4575 \cs_new_protected:Npn \@@_actually_draw_Vdots:
4576 {
4577 \bool_lazy_and:nnTF { \l_@@_initial_open_bool } { \l_@@_final_open_bool }
4578 { \@@_actually_draw_Vdots_i: }
4579 { \@@_actually_draw_Vdots_ii: }
4580 \dim_set_eq:NN \l_@@_x_final_dim \l_@@_x_initial_dim
4581 \@@_draw_line:
4582 }

First, the case of a dotted line open on both sides.
4583 \cs_new_protected:Npn \@@_actually_draw_Vdots_i:
4584 {
4585 \@@_open_y_initial_dim:
4586 \@@_open_y_final_dim:
4587 \int_if_zero:nTF { \l_@@_initial_j_int }

We have a dotted line open on both sides in the “first column”.
4588 {
4589 \@@_qpoint:n { col - 1 }
4590 \dim_set_eq:NN \l_@@_x_initial_dim \pgf@x
4591 \dim_sub:Nn \l_@@_x_initial_dim
4592 { \@@_colsep: + \l_@@_left_margin_dim + \l_@@_extra_left_margin_dim }
4593 }
4594 {
4595 \bool_lazy_and:nnTF
4596 { \int_compare_p:nNn { \l_@@_last_col_int } > { -2 } }
4597 {
4598 \int_compare_p:nNn
4599 { \l_@@_initial_j_int } = { \g_@@_col_total_int }
4600 }

We have a dotted line open on both sides and which is in the “last column”.
4601 {
4602 \@@_qpoint:n { col - \int_use:N \l_@@_initial_j_int }
4603 \dim_set_eq:NN \l_@@_x_initial_dim \pgf@x
4604 \dim_add:Nn \l_@@_x_initial_dim
4605 { \@@_colsep: + \l_@@_right_margin_dim + \l_@@_extra_right_margin_dim }
4606 }

114

We have a dotted line open on both sides which is not in an exterior column.
4607 {
4608 \@@_qpoint:n { col - \int_use:N \l_@@_initial_j_int }
4609 \dim_set_eq:NN \l_tmpa_dim \pgf@x
4610 \@@_qpoint:n { col - \int_eval:n { \l_@@_initial_j_int + 1 } }
4611 \dim_set:Nn \l_@@_x_initial_dim { (\pgf@x + \l_tmpa_dim) / 2 }
4612 }
4613 }
4614 }

The command \@@_draw_line: is in \@@_actually_draw_Vdots:

Now, the dotted line is not open on both sides (maybe open on only one side).
The main task is to determine the x-value of the dotted line to draw.
The boolean \l_tmpa_bool will indicate whether the column is of type l or may be considered as if.

4615 \cs_new_protected:Npn \@@_actually_draw_Vdots_ii:
4616 {
4617 \bool_set_false:N \l_tmpa_bool
4618 \bool_if:NF \l_@@_initial_open_bool
4619 {
4620 \bool_if:NF \l_@@_final_open_bool
4621 {
4622 \@@_set_initial_coords_from_anchor:n { south~west }
4623 \@@_set_final_coords_from_anchor:n { north~west }
4624 \bool_set:Nn \l_tmpa_bool
4625 {
4626 \dim_compare_p:nNn
4627 { \l_@@_x_initial_dim } = { \l_@@_x_final_dim }
4628 }
4629 }
4630 }

Now, we try to determine whether the column is of type c or may be considered as if.
4631 \bool_if:NTF \l_@@_initial_open_bool
4632 {
4633 \@@_open_y_initial_dim:
4634 \@@_set_final_coords_from_anchor:n { north }
4635 \dim_set_eq:NN \l_@@_x_initial_dim \l_@@_x_final_dim
4636 }
4637 {
4638 \@@_set_initial_coords_from_anchor:n { south }
4639 \bool_if:NTF \l_@@_final_open_bool
4640 { \@@_open_y_final_dim: }

Now the case where both extremities are closed. The first conditional tests whether the column is of
type c or may be considered as if.

4641 {
4642 \@@_set_final_coords_from_anchor:n { north }
4643 \dim_compare:nNnF { \l_@@_x_initial_dim } = { \l_@@_x_final_dim }
4644 {
4645 \dim_set:Nn \l_@@_x_initial_dim
4646 {
4647 \bool_if:NTF \l_tmpa_bool { \dim_min:nn } { \dim_max:nn }
4648 \l_@@_x_initial_dim \l_@@_x_final_dim
4649 }
4650 }
4651 }
4652 }
4653 }

The following function is used by \Vbrace but not by regular uses of \Vdots or \Vdotsfor.
The command \@@_actually_draw_Vbrace: has the following implicit arguments:

• \l_@@_initial_i_int

115

• \l_@@_initial_j_int

• \l_@@_initial_open_bool

• \l_@@_final_i_int

• \l_@@_final_j_int

• \l_@@_final_open_bool.

4654 \cs_new_protected:Npn \@@_actually_draw_Vbrace:
4655 {
4656 \bool_if:NTF \l_@@_initial_open_bool
4657 { \@@_open_y_initial_dim: }
4658 { \@@_set_initial_coords_from_anchor:n { south } }
4659 \bool_if:NTF \l_@@_final_open_bool
4660 { \@@_open_y_final_dim: }
4661 { \@@_set_final_coords_from_anchor:n { north } }

Now, we have the correct values for the y-values of both extremities of the brace. We have to compute
the x-value (there is only one x-value since, of course, the brace is vertical).

If we are in the first (exterior) column, the brace must be drawn right flush.
4662 \int_if_zero:nTF { \l_@@_initial_j_int }
4663 {
4664 \@@_qpoint:n { col - 1 }
4665 \dim_set_eq:NN \l_@@_x_initial_dim \pgf@x
4666 \dim_sub:Nn \l_@@_x_initial_dim
4667 { \@@_colsep: + \l_@@_left_margin_dim + \l_@@_extra_left_margin_dim }
4668 }

Elsewhere, the brace must be drawn left flush.
4669 {
4670 \@@_qpoint:n { col - \int_use:N \l_@@_initial_j_int }
4671 \dim_set_eq:NN \l_@@_x_initial_dim \pgf@x
4672 \dim_add:Nn \l_@@_x_initial_dim
4673 { \@@_colsep: + \l_@@_right_margin_dim + \l_@@_extra_right_margin_dim }
4674 }

We draw a vertical rule and that’s why, of course, both x-values are equal.
4675 \dim_set_eq:NN \l_@@_x_final_dim \l_@@_x_initial_dim
4676 \@@_draw_line:
4677 }

4678 \cs_new:Npn \@@_colsep:
4679 { \bool_if:NTF \l_@@_tabular_bool { \tabcolsep } { \arraycolsep } }

For the diagonal lines, the situation is a bit more complicated because, by default, we parallelize
the diagonals lines. The first diagonal line is drawn and then, all the other diagonal lines are drawn
parallel to the first one.
The first and the second arguments are the coordinates of the cell where the command has been
issued. The third argument is the list of the options.

4680 \cs_new_protected:Npn \@@_draw_Ddots:nnn #1 #2 #3
4681 {
4682 \@@_adjust_to_submatrix:nn { #1 } { #2 }
4683 \cs_if_free:cT { @@ _ dotted _ #1 - #2 }
4684 {
4685 \@@_find_extremities_of_line:nnnn { #1 } { #2 } { 1 } { 1 }

116

The previous command may have changed the current environment by marking some cells as “dotted”,
but, fortunately, it is outside the group for the options of the line.

4686 \bool_if:NT \g_@@_aux_found_bool
4687 {
4688 \group_begin:
4689 \@@_open_shorten:
4690 \keys_set:nn { nicematrix / xdots } { #3 }
4691 \@@_color:o \l_@@_xdots_color_tl
4692 \@@_actually_draw_Ddots:
4693 \group_end:
4694 }
4695 }
4696 }

The command \@@_actually_draw_Ddots: has the following implicit arguments:

• \l_@@_initial_i_int

• \l_@@_initial_j_int

• \l_@@_initial_open_bool

• \l_@@_final_i_int

• \l_@@_final_j_int

• \l_@@_final_open_bool.

4697 \cs_new_protected:Npn \@@_actually_draw_Ddots:
4698 {
4699 \bool_if:NTF \l_@@_initial_open_bool
4700 {
4701 \@@_open_y_initial_dim:
4702 \@@_open_x_initial_dim:
4703 }
4704 { \@@_set_initial_coords_from_anchor:n { south~east } }
4705 \bool_if:NTF \l_@@_final_open_bool
4706 {
4707 \@@_open_x_final_dim:
4708 \dim_set_eq:NN \l_@@_x_final_dim \pgf@x
4709 }
4710 { \@@_set_final_coords_from_anchor:n { north~west } }

We have retrieved the coordinates in the usual way (they are stored in \l_@@_x_initial_dim, etc.).
If the parallelization of the diagonals is set, we will have (maybe) to adjust the fourth coordinate.

4711 \bool_if:NT \l_@@_parallelize_diags_bool
4712 {
4713 \int_gincr:N \g_@@_ddots_int

We test if the diagonal line is the first one (the counter \g_@@_ddots_int is created for this usage).
4714 \int_compare:nNnTF { \g_@@_ddots_int } = { \c_one_int }

If the diagonal line is the first one, we have no adjustment of the line to do but we store the ∆x and
the ∆y of the line because these values will be used to draw the others diagonal lines parallels to the
first one.

4715 {
4716 \dim_gset:Nn \g_@@_delta_x_one_dim
4717 { \l_@@_x_final_dim - \l_@@_x_initial_dim }
4718 \dim_gset:Nn \g_@@_delta_y_one_dim
4719 { \l_@@_y_final_dim - \l_@@_y_initial_dim }
4720 }

117

If the diagonal line is not the first one, we have to adjust the second extremity of the line by modifying
the coordinate \l_@@_x_initial_dim.

4721 {
4722 \dim_compare:nNnF { \g_@@_delta_x_one_dim } = { \c_zero_dim }
4723 {
4724 \dim_set:Nn \l_@@_y_final_dim
4725 {
4726 \l_@@_y_initial_dim +
4727 (\l_@@_x_final_dim - \l_@@_x_initial_dim) *
4728 \dim_ratio:nn \g_@@_delta_y_one_dim \g_@@_delta_x_one_dim
4729 }
4730 }
4731 }
4732 }
4733 \@@_draw_line:
4734 }

We draw the \Iddots diagonals in the same way.
The first and the second arguments are the coordinates of the cell where the command has been
issued. The third argument is the list of the options.

4735 \cs_new_protected:Npn \@@_draw_Iddots:nnn #1 #2 #3
4736 {
4737 \@@_adjust_to_submatrix:nn { #1 } { #2 }
4738 \cs_if_free:cT { @@ _ dotted _ #1 - #2 }
4739 {
4740 \@@_find_extremities_of_line:nnnn { #1 } { #2 } { 1 } { -1 }

The previous command may have changed the current environment by marking some cells as “dotted”,
but, fortunately, it is outside the group for the options of the line.

4741 \bool_if:NT \g_@@_aux_found_bool
4742 {
4743 \group_begin:
4744 \@@_open_shorten:
4745 \keys_set:nn { nicematrix / xdots } { #3 }
4746 \@@_color:o \l_@@_xdots_color_tl
4747 \@@_actually_draw_Iddots:
4748 \group_end:
4749 }
4750 }
4751 }

The command \@@_actually_draw_Iddots: has the following implicit arguments:

• \l_@@_initial_i_int

• \l_@@_initial_j_int

• \l_@@_initial_open_bool

• \l_@@_final_i_int

• \l_@@_final_j_int

• \l_@@_final_open_bool.

4752 \cs_new_protected:Npn \@@_actually_draw_Iddots:
4753 {
4754 \bool_if:NTF \l_@@_initial_open_bool
4755 {
4756 \@@_open_y_initial_dim:
4757 \@@_open_x_initial_dim:
4758 }
4759 { \@@_set_initial_coords_from_anchor:n { south~west } }
4760 \bool_if:NTF \l_@@_final_open_bool

118

4761 {
4762 \@@_open_y_final_dim:
4763 \@@_open_x_final_dim:
4764 }
4765 { \@@_set_final_coords_from_anchor:n { north~east } }
4766 \bool_if:NT \l_@@_parallelize_diags_bool
4767 {
4768 \int_gincr:N \g_@@_iddots_int
4769 \int_compare:nNnTF { \g_@@_iddots_int } = { \c_one_int }
4770 {
4771 \dim_gset:Nn \g_@@_delta_x_two_dim
4772 { \l_@@_x_final_dim - \l_@@_x_initial_dim }
4773 \dim_gset:Nn \g_@@_delta_y_two_dim
4774 { \l_@@_y_final_dim - \l_@@_y_initial_dim }
4775 }
4776 {
4777 \dim_compare:nNnF { \g_@@_delta_x_two_dim } = { \c_zero_dim }
4778 {
4779 \dim_set:Nn \l_@@_y_final_dim
4780 {
4781 \l_@@_y_initial_dim +
4782 (\l_@@_x_final_dim - \l_@@_x_initial_dim) *
4783 \dim_ratio:nn \g_@@_delta_y_two_dim \g_@@_delta_x_two_dim
4784 }
4785 }
4786 }
4787 }
4788 \@@_draw_line:
4789 }

17 The actual instructions for drawing the dotted lines with
Tikz

The command \@@_draw_line: should be used in a {pgfpicture}. It has six implicit arguments:

• \l_@@_x_initial_dim

• \l_@@_y_initial_dim

• \l_@@_x_final_dim

• \l_@@_y_final_dim

• \l_@@_initial_open_bool

• \l_@@_final_open_bool

4790 \cs_new_protected:Npn \@@_draw_line:
4791 {
4792 \pgfrememberpicturepositiononpagetrue
4793 \pgf@relevantforpicturesizefalse
4794 \bool_lazy_or:nnTF
4795 { \tl_if_eq_p:NN \l_@@_xdots_line_style_tl \c_@@_standard_tl }
4796 { \l_@@_dotted_bool }
4797 { \@@_draw_standard_dotted_line: }
4798 { \@@_draw_unstandard_dotted_line: }
4799 }

119

We have to do a special construction with \exp_args:No to be able to put in the list of options in
the correct place in the Tikz instruction.

4800 \cs_new_protected:Npn \@@_draw_unstandard_dotted_line:
4801 {
4802 \begin { scope }
4803 \@@_draw_unstandard_dotted_line:o
4804 { \l_@@_xdots_line_style_tl , \l_@@_xdots_color_tl }
4805 }

We have used the fact that, in pgf, un color name can be put directly in a list of options (that’s why
we have put diredtly \l_@@_xdots_color_tl).
The argument of \@@_draw_unstandard_dotted_line:n is, in fact, the list of options.

4806 \cs_new_protected:Npn \@@_draw_unstandard_dotted_line:n #1
4807 {
4808 \@@_draw_unstandard_dotted_line:nooo
4809 { #1 }
4810 \l_@@_xdots_up_tl
4811 \l_@@_xdots_down_tl
4812 \l_@@_xdots_middle_tl
4813 }
4814 \cs_generate_variant:Nn \@@_draw_unstandard_dotted_line:n { o }

The following Tikz styles are for the three labels (set by the symbols _, ^ and =) of a continuous line
with a non-standard style.

4815 \hook_gput_code:nnn { begindocument } { . }
4816 {
4817 \IfPackageLoadedT { tikz }
4818 {
4819 \tikzset
4820 {
4821 @@_node_above / .style = { sloped , above } ,
4822 @@_node_below / .style = { sloped , below } ,
4823 @@_node_middle / .style =
4824 {
4825 sloped ,
4826 inner~sep = \c_@@_innersep_middle_dim
4827 }
4828 }
4829 }
4830 }

4831 \cs_new_protected:Npn \@@_draw_unstandard_dotted_line:nnnn #1 #2 #3 #4
4832 {

We take into account the parameters xdots/shorten-start and xdots/shorten-end “by hand”
because, when we use the key shorten > and shorten < of TikZ in the command \draw, we don’t
have the expected output with {decorate,decoration=brace} is used.

The dimension \l_@@_l_dim is the length ` of the line to draw. We use the floating point reals of
the L3 programming layer to compute this length.

4833 \dim_zero_new:N \l_@@_l_dim
4834 \dim_set:Nn \l_@@_l_dim
4835 {
4836 \fp_to_dim:n
4837 {
4838 sqrt
4839 (
4840 (\l_@@_x_final_dim - \l_@@_x_initial_dim) ^ 2
4841 +
4842 (\l_@@_y_final_dim - \l_@@_y_initial_dim) ^ 2
4843)
4844 }
4845 }

120

It seems that, during the first compilations, the value of \l_@@_l_dim may be erroneous (equal to zero
or very large). We must detect these cases because they would cause errors during the drawing of the
dotted line. Maybe we should also write something in the aux file to say that one more compilation
should be done.

4846 \dim_compare:nNnT { \l_@@_l_dim } < { \c_@@_max_l_dim }
4847 {
4848 \dim_compare:nNnT { \l_@@_l_dim } > { 1 pt }
4849 \@@_draw_unstandard_dotted_line_i:
4850 }

If the key xdots/horizontal-labels has been used.
4851 \bool_if:NT \l_@@_xdots_h_labels_bool
4852 {
4853 \tikzset
4854 {
4855 @@_node_above / .style = { auto = left } ,
4856 @@_node_below / .style = { auto = right } ,
4857 @@_node_middle / .style = { inner~sep = \c_@@_innersep_middle_dim }
4858 }
4859 }
4860 \tl_if_empty:nF { #4 }
4861 { \tikzset { @@_node_middle / .append~style = { fill = white } } }

4862 \dim_zero:N \l_tmpa_dim
4863 \dim_zero:N \l_tmpb_dim
4864 \tl_if_eq:NNTF \l_@@_xdots_line_style_tl \c_@@_brace_tl
4865 {

We test whether the brace is vertical or horizontal.
4866 \dim_compare:nNnTF \l_@@_x_final_dim = \l_@@_x_initial_dim
4867 { \dim_set_eq:NN \l_tmpa_dim \l_@@_brace_shift_dim }
4868 { \dim_set_eq:NN \l_tmpb_dim \l_@@_brace_shift_dim }
4869 }
4870 {
4871 \tl_if_eq:NNT \l_@@_xdots_line_style_tl \c_@@_mirrored_brace_tl
4872 {
4873 \dim_compare:nNnTF \l_@@_x_final_dim = \l_@@_x_initial_dim
4874 { \dim_set:Nn \l_tmpa_dim { - \l_@@_brace_shift_dim } }
4875 { \dim_set:Nn \l_tmpb_dim { - \l_@@_brace_shift_dim } }
4876 }
4877 }
4878 \use:e
4879 {
4880 \exp_not:N \begin { scope }
4881 [shift = {(\dim_use:N \l_tmpa_dim,\dim_use:N \l_tmpb_dim)}]
4882 }
4883 \draw
4884 [#1]
4885 (\l_@@_x_initial_dim , \l_@@_y_initial_dim)
4886 -- node [@@_node_middle] { $ \scriptstyle #4 $ }
4887 node [@@_node_below] { $ \scriptstyle #3 $ }
4888 node [@@_node_above] { $ \scriptstyle #2 $ }
4889 (\l_@@_x_final_dim , \l_@@_y_final_dim) ;
4890 \end { scope }
4891 \end { scope }
4892 }
4893 \cs_generate_variant:Nn \@@_draw_unstandard_dotted_line:nnnn { n o o o }

4894 \cs_new_protected:Npn \@@_draw_unstandard_dotted_line_i:
4895 {
4896 \dim_set:Nn \l_tmpa_dim
4897 {
4898 \l_@@_x_initial_dim
4899 + (\l_@@_x_final_dim - \l_@@_x_initial_dim)
4900 * \dim_ratio:nn \l_@@_xdots_shorten_start_dim \l_@@_l_dim

121

4901 }
4902 \dim_set:Nn \l_tmpb_dim
4903 {
4904 \l_@@_y_initial_dim
4905 + (\l_@@_y_final_dim - \l_@@_y_initial_dim)
4906 * \dim_ratio:nn \l_@@_xdots_shorten_start_dim \l_@@_l_dim
4907 }
4908 \dim_set:Nn \l_@@_tmpc_dim
4909 {
4910 \l_@@_x_final_dim
4911 - (\l_@@_x_final_dim - \l_@@_x_initial_dim)
4912 * \dim_ratio:nn \l_@@_xdots_shorten_end_dim \l_@@_l_dim
4913 }
4914 \dim_set:Nn \l_@@_tmpd_dim
4915 {
4916 \l_@@_y_final_dim
4917 - (\l_@@_y_final_dim - \l_@@_y_initial_dim)
4918 * \dim_ratio:nn \l_@@_xdots_shorten_end_dim \l_@@_l_dim
4919 }
4920 \dim_set_eq:NN \l_@@_x_initial_dim \l_tmpa_dim
4921 \dim_set_eq:NN \l_@@_y_initial_dim \l_tmpb_dim
4922 \dim_set_eq:NN \l_@@_x_final_dim \l_@@_tmpc_dim
4923 \dim_set_eq:NN \l_@@_y_final_dim \l_@@_tmpd_dim
4924 }

The command \@@_draw_standard_dotted_line: draws the line with our system of dots (which
gives a dotted line with real rounded dots).

4925 \cs_new_protected:Npn \@@_draw_standard_dotted_line:
4926 {
4927 \group_begin:

The dimension \l_@@_l_dim is the length ` of the line to draw. We use the floating point reals of
the L3 programming layer to compute this length.

4928 \dim_zero_new:N \l_@@_l_dim
4929 \dim_set:Nn \l_@@_l_dim
4930 {
4931 \fp_to_dim:n
4932 {
4933 sqrt
4934 (
4935 (\l_@@_x_final_dim - \l_@@_x_initial_dim) ^ 2
4936 +
4937 (\l_@@_y_final_dim - \l_@@_y_initial_dim) ^ 2
4938)
4939 }
4940 }

It seems that, during the first compilations, the value of \l_@@_l_dim may be erroneous (equal to zero
or very large). We must detect these cases because they would cause errors during the drawing of the
dotted line. Maybe we should also write something in the aux file to say that one more compilation
should be done.

4941 \dim_compare:nNnT { \l_@@_l_dim } < { \c_@@_max_l_dim }
4942 {
4943 \dim_compare:nNnT { \l_@@_l_dim } > { 1 pt }
4944 { \@@_draw_standard_dotted_line_i: }
4945 }
4946 \group_end:

4947 \bool_lazy_all:nF
4948 {
4949 { \tl_if_empty_p:N \l_@@_xdots_up_tl }
4950 { \tl_if_empty_p:N \l_@@_xdots_down_tl }
4951 { \tl_if_empty_p:N \l_@@_xdots_middle_tl }
4952 }

122

4953 { \@@_labels_standard_dotted_line: }
4954 }

4955 \dim_const:Nn \c_@@_max_l_dim { 50 cm }

4956 \cs_new_protected:Npn \@@_draw_standard_dotted_line_i:
4957 {

The number of dots will be \l_tmpa_int + 1.
4958 \int_set:Nn \l_tmpa_int
4959 {
4960 \dim_ratio:nn
4961 {
4962 \l_@@_l_dim
4963 - \l_@@_xdots_shorten_start_dim
4964 - \l_@@_xdots_shorten_end_dim
4965 }
4966 { \l_@@_xdots_inter_dim }
4967 }

The dimensions \l_tmpa_dim and \l_tmpb_dim are the coordinates of the vector between two dots
in the dotted line.

4968 \dim_set:Nn \l_tmpa_dim
4969 {
4970 (\l_@@_x_final_dim - \l_@@_x_initial_dim) *
4971 \dim_ratio:nn \l_@@_xdots_inter_dim \l_@@_l_dim
4972 }
4973 \dim_set:Nn \l_tmpb_dim
4974 {
4975 (\l_@@_y_final_dim - \l_@@_y_initial_dim) *
4976 \dim_ratio:nn \l_@@_xdots_inter_dim \l_@@_l_dim
4977 }

In the loop over the dots, the dimensions \l_@@_x_initial_dim and \l_@@_y_initial_dim will be
used for the coordinates of the dots. But, before the loop, we must move until the first dot.

4978 \dim_gadd:Nn \l_@@_x_initial_dim
4979 {
4980 (\l_@@_x_final_dim - \l_@@_x_initial_dim) *
4981 \dim_ratio:nn
4982 {
4983 \l_@@_l_dim - \l_@@_xdots_inter_dim * \l_tmpa_int
4984 + \l_@@_xdots_shorten_start_dim - \l_@@_xdots_shorten_end_dim
4985 }
4986 { 2 \l_@@_l_dim }
4987 }
4988 \dim_gadd:Nn \l_@@_y_initial_dim
4989 {
4990 (\l_@@_y_final_dim - \l_@@_y_initial_dim) *
4991 \dim_ratio:nn
4992 {
4993 \l_@@_l_dim - \l_@@_xdots_inter_dim * \l_tmpa_int
4994 + \l_@@_xdots_shorten_start_dim - \l_@@_xdots_shorten_end_dim
4995 }
4996 { 2 \l_@@_l_dim }
4997 }
4998 \pgf@relevantforpicturesizefalse
4999 \int_step_inline:nnn { \c_zero_int } { \l_tmpa_int }
5000 {
5001 \pgfpathcircle
5002 { \pgfpoint \l_@@_x_initial_dim \l_@@_y_initial_dim }
5003 { \l_@@_xdots_radius_dim }
5004 \dim_add:Nn \l_@@_x_initial_dim \l_tmpa_dim
5005 \dim_add:Nn \l_@@_y_initial_dim \l_tmpb_dim
5006 }
5007 \pgfusepathqfill
5008 }

123

5009 \cs_new_protected:Npn \@@_labels_standard_dotted_line:
5010 {
5011 \pgfscope
5012 \pgftransformshift
5013 {
5014 \pgfpointlineattime { 0.5 }
5015 { \pgfpoint \l_@@_x_initial_dim \l_@@_y_initial_dim }
5016 { \pgfpoint \l_@@_x_final_dim \l_@@_y_final_dim }
5017 }
5018 \fp_set:Nn \l_tmpa_fp
5019 {
5020 atand
5021 (
5022 \l_@@_y_final_dim - \l_@@_y_initial_dim ,
5023 \l_@@_x_final_dim - \l_@@_x_initial_dim
5024)
5025 }
5026 \pgftransformrotate { \fp_use:N \l_tmpa_fp }
5027 \bool_if:NF \l_@@_xdots_h_labels_bool { \fp_zero:N \l_tmpa_fp }
5028 \tl_if_empty:NF \l_@@_xdots_middle_tl
5029 {
5030 \begin { pgfscope }
5031 \pgfset { inner~sep = \c_@@_innersep_middle_dim }
5032 \pgfnode
5033 { rectangle }
5034 { center }
5035 {
5036 \rotatebox { \fp_eval:n { - \l_tmpa_fp } }
5037 {
5038 $ % $
5039 \scriptstyle \l_@@_xdots_middle_tl
5040 $ % $
5041 }
5042 }
5043 { }
5044 {
5045 \pgfsetfillcolor { white }
5046 \pgfusepath { fill }
5047 }
5048 \end { pgfscope }
5049 }
5050 \tl_if_empty:NF \l_@@_xdots_up_tl
5051 {
5052 \pgfnode
5053 { rectangle }
5054 { south }
5055 {
5056 \rotatebox { \fp_eval:n { - \l_tmpa_fp } }
5057 {
5058 $ % $
5059 \scriptstyle \l_@@_xdots_up_tl
5060 $ % $
5061 }
5062 }
5063 { }
5064 { \pgfusepath { } }
5065 }
5066 \tl_if_empty:NF \l_@@_xdots_down_tl
5067 {
5068 \pgfnode
5069 { rectangle }
5070 { north }
5071 {

124

5072 \rotatebox { \fp_eval:n { - \l_tmpa_fp } }
5073 {
5074 $ % $
5075 \scriptstyle \l_@@_xdots_down_tl
5076 $ % $
5077 }
5078 }
5079 { }
5080 { \pgfusepath { } }
5081 }
5082 \endpgfscope
5083 }

18 User commands available in the new environments

The commands \@@_Ldots:, \@@_Cdots:, \@@_Vdots:, \@@_Ddots: and \@@_Iddots: will be linked
to \Ldots, \Cdots, \Vdots, \Ddots and \Iddots in the environments {NiceArray} (the other envi-
ronments of nicematrix rely upon {NiceArray}).

The syntax of these commands uses the character _ as embellishment and that’s why we have
to insert a character _ in the arg spec of these commands. However, we don’t know the future
catcode of _ in the main document (maybe the user will use underscore, and, in that case, the
catcode is 13 because underscore activates _). That’s why these commands will be defined in a
\hook_gput_code:nnn { begindocument } { . } and the arg spec will be rescanned.

5084 \hook_gput_code:nnn { begindocument } { . }
5085 {

We rescan the argspec in order the correct catcode of _ in the main document (and that’s why we
are in a \AtBeginDocument).

5086 \tl_set_rescan:Nnn \l_@@_argspec_tl { } { m E { _ ^ : } { { } { } { } } }
5087 \cs_new_protected:Npn \@@_Ldots:
5088 { \@@_collect_options:n { \@@_Ldots_i } }
5089 \exp_args:NNo \NewDocumentCommand \@@_Ldots_i \l_@@_argspec_tl
5090 {
5091 \int_if_zero:nTF { \c@jCol }
5092 { \@@_error:nn { in~first~col } { \Ldots } }
5093 {
5094 \int_compare:nNnTF { \c@jCol } = { \l_@@_last_col_int }
5095 { \@@_error:nn { in~last~col } { \Ldots } }
5096 {
5097 \@@_instruction_of_type:nnn { \c_false_bool } { Ldots }
5098 { #1 , down = #2 , up = #3 , middle = #4 }
5099 }
5100 }
5101 \bool_if:NF \l_@@_nullify_dots_bool
5102 { \phantom { \ensuremath { \@@_old_ldots: } } }
5103 \bool_gset_true:N \g_@@_empty_cell_bool
5104 }

5105 \cs_new_protected:Npn \@@_Cdots:
5106 { \@@_collect_options:n { \@@_Cdots_i } }
5107 \exp_args:NNo \NewDocumentCommand \@@_Cdots_i \l_@@_argspec_tl
5108 {
5109 \int_if_zero:nTF { \c@jCol }
5110 { \@@_error:nn { in~first~col } { \Cdots } }
5111 {
5112 \int_compare:nNnTF { \c@jCol } = { \l_@@_last_col_int }
5113 { \@@_error:nn { in~last~col } { \Cdots } }

125

5114 {
5115 \@@_instruction_of_type:nnn { \c_false_bool } { Cdots }
5116 { #1 , down = #2 , up = #3 , middle = #4 }
5117 }
5118 }
5119 \bool_if:NF \l_@@_nullify_dots_bool
5120 { \phantom { \ensuremath { \@@_old_cdots: } } }
5121 \bool_gset_true:N \g_@@_empty_cell_bool
5122 }

5123 \cs_new_protected:Npn \@@_Vdots:
5124 { \@@_collect_options:n { \@@_Vdots_i } }
5125 \exp_args:NNo \NewDocumentCommand \@@_Vdots_i \l_@@_argspec_tl
5126 {
5127 \int_if_zero:nTF { \c@iRow }
5128 { \@@_error:nn { in~first~row } { \Vdots } }
5129 {
5130 \int_compare:nNnTF { \c@iRow } = { \l_@@_last_row_int }
5131 { \@@_error:nn { in~last~row } { \Vdots } }
5132 {
5133 \@@_instruction_of_type:nnn { \c_false_bool } { Vdots }
5134 { #1 , down = #2 , up = #3 , middle = #4 }
5135 }
5136 }
5137 \bool_if:NF \l_@@_nullify_dots_bool
5138 { \phantom { \ensuremath { \@@_old_vdots: } } }
5139 \bool_gset_true:N \g_@@_empty_cell_bool
5140 }

5141 \cs_new_protected:Npn \@@_Ddots:
5142 { \@@_collect_options:n { \@@_Ddots_i } }
5143 \exp_args:NNo \NewDocumentCommand \@@_Ddots_i \l_@@_argspec_tl
5144 {
5145 \int_case:nnF \c@iRow
5146 {
5147 0 { \@@_error:nn { in~first~row } { \Ddots } }
5148 \l_@@_last_row_int { \@@_error:nn { in~last~row } { \Ddots } }
5149 }
5150 {
5151 \int_case:nnF \c@jCol
5152 {
5153 0 { \@@_error:nn { in~first~col } { \Ddots } }
5154 \l_@@_last_col_int { \@@_error:nn { in~last~col } { \Ddots } }
5155 }
5156 {
5157 \keys_set_known:nn { nicematrix / Ddots } { #1 }
5158 \@@_instruction_of_type:nnn \l_@@_draw_first_bool { Ddots }
5159 { #1 , down = #2 , up = #3 , middle = #4 }
5160 }
5161

5162 }
5163 \bool_if:NF \l_@@_nullify_dots_bool
5164 { \phantom { \ensuremath { \@@_old_ddots: } } }
5165 \bool_gset_true:N \g_@@_empty_cell_bool
5166 }

5167 \cs_new_protected:Npn \@@_Iddots:
5168 { \@@_collect_options:n { \@@_Iddots_i } }
5169 \exp_args:NNo \NewDocumentCommand \@@_Iddots_i \l_@@_argspec_tl
5170 {
5171 \int_case:nnF \c@iRow

126

5172 {
5173 0 { \@@_error:nn { in~first~row } { \Iddots } }
5174 \l_@@_last_row_int { \@@_error:nn { in~last~row } { \Iddots } }
5175 }
5176 {
5177 \int_case:nnF \c@jCol
5178 {
5179 0 { \@@_error:nn { in~first~col } { \Iddots } }
5180 \l_@@_last_col_int { \@@_error:nn { in~last~col } { \Iddots } }
5181 }
5182 {
5183 \keys_set_known:nn { nicematrix / Ddots } { #1 }
5184 \@@_instruction_of_type:nnn { \l_@@_draw_first_bool } { Iddots }
5185 { #1 , down = #2 , up = #3 , middle = #4 }
5186 }
5187 }
5188 \bool_if:NF \l_@@_nullify_dots_bool
5189 { \phantom { \ensuremath { \@@_old_iddots: } } }
5190 \bool_gset_true:N \g_@@_empty_cell_bool
5191 }
5192 }

End of the \AddToHook.

Despite its name, the following set of keys will be used for \Ddots but also for \Iddots.
5193 \keys_define:nn { nicematrix / Ddots }
5194 {
5195 draw-first .bool_set:N = \l_@@_draw_first_bool ,
5196 draw-first .default:n = true ,
5197 draw-first .value_forbidden:n = true
5198 }

The command \@@_Hspace: will be linked to \hspace in {NiceArray}.
5199 \cs_new_protected:Npn \@@_Hspace:
5200 {
5201 \bool_gset_true:N \g_@@_empty_cell_bool
5202 \hspace
5203 }

In the environments of nicematrix, the command \multicolumn is redefined. We will patch the
environment {tabular} to go back to the previous value of \multicolumn.

5204 \cs_set_eq:NN \@@_old_multicolumn: \multicolumn

The command \@@_Hdotsfor will be linked to \Hdotsfor in {NiceArrayWithDelims}. Tikz nodes
are created also in the implicit cells of the \Hdotsfor (maybe we should modify that point).

This command must not be protected since it begins with \multicolumn.
5205 \cs_new:Npn \@@_Hdotsfor:
5206 {
5207 \bool_lazy_and:nnTF
5208 { \int_if_zero_p:n { \c@jCol } }
5209 { \int_if_zero_p:n { \l_@@_first_col_int } }
5210 {
5211 \bool_if:NTF \g_@@_after_col_zero_bool
5212 {
5213 \multicolumn { 1 } { c } { }
5214 \@@_Hdotsfor_i:
5215 }
5216 { \@@_fatal:n { Hdotsfor~in~col~0 } }
5217 }
5218 {
5219 \multicolumn { 1 } { c } { }

127

5220 \@@_Hdotsfor_i:
5221 }
5222 }

The command \@@_Hdotsfor_i: is defined with \NewDocumentCommand because it has an optional
argument. Note that such a command defined by \NewDocumentCommand is protected and that’s why
we have put the \multicolumn before (in the definition of \@@_Hdotsfor:).

5223 \hook_gput_code:nnn { begindocument } { . }
5224 {

We don’t put ! before the last optional argument for homogeneity with \Cdots, etc. which have only
one optional argument.

5225 \cs_new_protected:Npn \@@_Hdotsfor_i:
5226 { \@@_collect_options:n { \@@_Hdotsfor_ii } }

We rescan the argspec in order the correct catcode of _ in the main document (and that’s why we
are in a \AtBeginDocument).

5227 \tl_set_rescan:Nnn \l_tmpa_tl { } { m m O { } E { _ ^ : } { { } { } { } } }
5228 \exp_args:NNo \NewDocumentCommand \@@_Hdotsfor_ii \l_tmpa_tl
5229 {
5230 \tl_gput_right:Ne \g_@@_HVdotsfor_lines_tl
5231 {
5232 \@@_Hdotsfor:nnnn
5233 { \int_use:N \c@iRow }
5234 { \int_use:N \c@jCol }
5235 { #2 }
5236 {
5237 #1 , #3 ,
5238 down = \exp_not:n { #4 } ,
5239 up = \exp_not:n { #5 } ,
5240 middle = \exp_not:n { #6 }
5241 }
5242 }
5243 \prg_replicate:nn { #2 - 1 }
5244 {
5245 &
5246 \multicolumn { 1 } { c } { }
5247 \cs_set_eq:NN \CodeAfter \@@_CodeAfter_i:
5248 }
5249 }
5250 }

5251 \cs_new_protected:Npn \@@_Hdotsfor:nnnn #1 #2 #3 #4
5252 {
5253 \bool_set_false:N \l_@@_initial_open_bool
5254 \bool_set_false:N \l_@@_final_open_bool

For the row, it’s easy.
5255 \int_set:Nn \l_@@_initial_i_int { #1 }
5256 \int_set_eq:NN \l_@@_final_i_int \l_@@_initial_i_int

For the column, it’s a bit more complicated.
5257 \int_compare:nNnTF { #2 } = { \c_one_int }
5258 {
5259 \int_set_eq:NN \l_@@_initial_j_int \c_one_int
5260 \bool_set_true:N \l_@@_initial_open_bool
5261 }
5262 {
5263 \cs_if_exist:cTF
5264 {
5265 pgf @ sh @ ns @ \@@_env:
5266 - \int_use:N \l_@@_initial_i_int
5267 - \int_eval:n { #2 - 1 }
5268 }
5269 { \int_set:Nn \l_@@_initial_j_int { #2 - 1 } }

128

5270 {
5271 \int_set:Nn \l_@@_initial_j_int { #2 }
5272 \bool_set_true:N \l_@@_initial_open_bool
5273 }
5274 }
5275 \int_compare:nNnTF { #2 + #3 -1 } = { \c@jCol }
5276 {
5277 \int_set:Nn \l_@@_final_j_int { #2 + #3 - 1 }
5278 \bool_set_true:N \l_@@_final_open_bool
5279 }
5280 {
5281 \cs_if_exist:cTF
5282 {
5283 pgf @ sh @ ns @ \@@_env:
5284 - \int_use:N \l_@@_final_i_int
5285 - \int_eval:n { #2 + #3 }
5286 }
5287 { \int_set:Nn \l_@@_final_j_int { #2 + #3 } }
5288 {
5289 \int_set:Nn \l_@@_final_j_int { #2 + #3 - 1 }
5290 \bool_set_true:N \l_@@_final_open_bool
5291 }
5292 }

5293 \bool_if:NT \g_@@_aux_found_bool
5294 {
5295 \group_begin:
5296 \@@_open_shorten:
5297 \int_if_zero:nTF { #1 }
5298 { \color { nicematrix-first-row } }
5299 {
5300 \int_compare:nNnT { #1 } = { \g_@@_row_total_int }
5301 { \color { nicematrix-last-row } }
5302 }
5303 \keys_set:nn { nicematrix / xdots } { #4 }
5304 \@@_color:o \l_@@_xdots_color_tl
5305 \@@_actually_draw_Ldots:
5306 \group_end:
5307 }

We declare all the cells concerned by the \Hdotsfor as “dotted” (for the dotted lines created by
\Cdots, \Ldots, etc., this job is done by \@@_find_extremities_of_line:nnnn). This declaration
is done by defining a special control sequence (to nil).

5308 \int_step_inline:nnn { #2 } { #2 + #3 - 1 }
5309 { \cs_set_nopar:cpn { @@ _ dotted _ #1 - ##1 } { } }
5310 }

5311 \hook_gput_code:nnn { begindocument } { . }
5312 {
5313 \cs_new_protected:Npn \@@_Vdotsfor:
5314 { \@@_collect_options:n { \@@_Vdotsfor_i } }

We rescan the argspec in order the correct catcode of _ in the main document (and that’s why we
are in a \AtBeginDocument).

5315 \tl_set_rescan:Nnn \l_tmpa_tl { } { m m O { } E { _ ^ : } { { } { } { } } }
5316 \exp_args:NNo \NewDocumentCommand \@@_Vdotsfor_i \l_tmpa_tl
5317 {
5318 \bool_gset_true:N \g_@@_empty_cell_bool
5319 \tl_gput_right:Ne \g_@@_HVdotsfor_lines_tl
5320 {
5321 \@@_Vdotsfor:nnnn
5322 { \int_use:N \c@iRow }
5323 { \int_use:N \c@jCol }

129

5324 { #2 }
5325 {
5326 #1 , #3 ,
5327 down = \exp_not:n { #4 } ,
5328 up = \exp_not:n { #5 } ,
5329 middle = \exp_not:n { #6 }
5330 }
5331 }
5332 }
5333 }

#1 is the number of row;
#2 is the number of column;
#3 is the numbers of rows which are involved;

5334 \cs_new_protected:Npn \@@_Vdotsfor:nnnn #1 #2 #3 #4
5335 {
5336 \bool_set_false:N \l_@@_initial_open_bool
5337 \bool_set_false:N \l_@@_final_open_bool

For the column, it’s easy.
5338 \int_set:Nn \l_@@_initial_j_int { #2 }
5339 \int_set_eq:NN \l_@@_final_j_int \l_@@_initial_j_int

For the row, it’s a bit more complicated.
5340 \int_compare:nNnTF { #1 } = { \c_one_int }
5341 {
5342 \int_set_eq:NN \l_@@_initial_i_int \c_one_int
5343 \bool_set_true:N \l_@@_initial_open_bool
5344 }
5345 {
5346 \cs_if_exist:cTF
5347 {
5348 pgf @ sh @ ns @ \@@_env:
5349 - \int_eval:n { #1 - 1 }
5350 - \int_use:N \l_@@_initial_j_int
5351 }
5352 { \int_set:Nn \l_@@_initial_i_int { #1 - 1 } }
5353 {
5354 \int_set:Nn \l_@@_initial_i_int { #1 }
5355 \bool_set_true:N \l_@@_initial_open_bool
5356 }
5357 }
5358 \int_compare:nNnTF { #1 + #3 - 1 } = { \c@iRow }
5359 {
5360 \int_set:Nn \l_@@_final_i_int { #1 + #3 - 1 }
5361 \bool_set_true:N \l_@@_final_open_bool
5362 }
5363 {
5364 \cs_if_exist:cTF
5365 {
5366 pgf @ sh @ ns @ \@@_env:
5367 - \int_eval:n { #1 + #3 }
5368 - \int_use:N \l_@@_final_j_int
5369 }
5370 { \int_set:Nn \l_@@_final_i_int { #1 + #3 } }
5371 {
5372 \int_set:Nn \l_@@_final_i_int { #1 + #3 - 1 }
5373 \bool_set_true:N \l_@@_final_open_bool
5374 }
5375 }

5376 \bool_if:NT \g_@@_aux_found_bool
5377 {
5378 \group_begin:

130

5379 \@@_open_shorten:
5380 \int_if_zero:nTF { #2 }
5381 { \color { nicematrix-first-col } }
5382 {
5383 \int_compare:nNnT { #2 } = { \g_@@_col_total_int }
5384 { \color { nicematrix-last-col } }
5385 }
5386 \keys_set:nn { nicematrix / xdots } { #4 }
5387 \@@_color:o \l_@@_xdots_color_tl
5388 \bool_if:NTF \l_@@_Vbrace_bool
5389 { \@@_actually_draw_Vbrace: }
5390 { \@@_actually_draw_Vdots: }
5391 \group_end:
5392 }

We declare all the cells concerned by the \Vdotsfor as “dotted” (for the dotted lines created by
\Cdots, \Ldots, etc., this job is done by \@@_find_extremities_of_line:nnnn). This declaration
is done by defining a special control sequence (to nil).

5393 \int_step_inline:nnn { #1 } { #1 + #3 - 1 }
5394 { \cs_set_nopar:cpn { @@ _ dotted _ ##1 - #2 } { } }
5395 }

The command \@@_rotate: will be linked to \rotate in {NiceArrayWithDelims}.
5396 \NewDocumentCommand \@@_rotate: { O { } }
5397 {
5398 \bool_gset_true:N \g_@@_rotate_bool
5399 \keys_set:nn { nicematrix / rotate } { #1 }
5400 \ignorespaces
5401 }

5402 \keys_define:nn { nicematrix / rotate }
5403 {
5404 c .code:n = \bool_gset_true:N \g_@@_rotate_c_bool ,
5405 c .value_forbidden:n = true ,
5406 unknown .code:n = \@@_error:n { Unknown~key~for~rotate }
5407 }

19 The command \line accessible in code-after

In the \CodeAfter, the command \@@_line:nn will be linked to \line. This command takes two
arguments which are the specifications of two cells in the array (in the format i-j) and draws a dotted
line between these cells. In fact, if also works with names of blocks.

First, we write a command with the following behaviour:

• If the argument is of the format i-j, our command applies the command \int_eval:n to i and j
;

• If not (that is to say, when it’s a name of a \Block), the argument is left unchanged.

This must not be protected (and is, of course fully expandable).14

5408 \cs_new:Npn \@@_double_int_eval:n #1-#2 \q_stop

14Indeed, we want that the user may use the command \line in \CodeAfter with LaTeX counters in the arguments
— with the command \value.

131

5409 {
5410 \tl_if_empty:nTF { #2 }
5411 { #1 }
5412 { \@@_double_int_eval_i:n #1-#2 \q_stop }
5413 }
5414 \cs_new:Npn \@@_double_int_eval_i:n #1-#2- \q_stop
5415 { \int_eval:n { #1 } - \int_eval:n { #2 } }

With the following construction, the command \@@_double_int_eval:n is applied to both argu-
ments before the application of \@@_line_i:nn (the construction uses the fact the \@@_line_i:nn
is protected and that \@@_double_int_eval:n is fully expandable).

5416 \hook_gput_code:nnn { begindocument } { . }
5417 {

We rescan the argspec in order the correct catcode of _ in the main document (and that’s why we
are in a \AtBeginDocument).

5418 \tl_set_rescan:Nnn \l_tmpa_tl { }
5419 { O { } m m ! O { } E { _ ^ : } { { } { } { } } }
5420 \exp_args:NNo \NewDocumentCommand \@@_line \l_tmpa_tl
5421 {
5422 \group_begin:
5423 \keys_set:nn { nicematrix / xdots } { #1 , #4 , down = #5 , up = #6 }
5424 \@@_color:o \l_@@_xdots_color_tl
5425 \use:e
5426 {
5427 \@@_line_i:nn
5428 { \@@_double_int_eval:n #2 - \q_stop }
5429 { \@@_double_int_eval:n #3 - \q_stop }
5430 }
5431 \group_end:
5432 }
5433 }

5434 \cs_new_protected:Npn \@@_line_i:nn #1 #2
5435 {
5436 \bool_set_false:N \l_@@_initial_open_bool
5437 \bool_set_false:N \l_@@_final_open_bool
5438 \bool_lazy_or:nnTF
5439 { \cs_if_free_p:c { pgf @ sh @ ns @ \@@_env: - #1 } }
5440 { \cs_if_free_p:c { pgf @ sh @ ns @ \@@_env: - #2 } }
5441 { \@@_error:nnn { unknown~cell~for~line~in~CodeAfter } { #1 } { #2 } }

The test of measuring@ is a security (cf. question 686649 on TeX StackExchange).
5442 { \legacy_if:nF { measuring@ } { \@@_draw_line_ii:nn { #1 } { #2 } } }
5443 }

5444 \hook_gput_code:nnn { begindocument } { . }
5445 {
5446 \cs_new_protected:Npe \@@_draw_line_ii:nn #1 #2
5447 {

We recall that, when externalization is used, \tikzpicture and \endtikzpicture (or \pgfpicture
and \endpgfpicture) must be directly “visible” and that why we do this static construction of the
command \@@_draw_line_ii:.

5448 \c_@@_pgfortikzpicture_tl
5449 \@@_draw_line_iii:nn { #1 } { #2 }
5450 \c_@@_endpgfortikzpicture_tl
5451 }
5452 }

The following command must be protected (it’s used in the construction of \@@_draw_line_ii:nn).
5453 \cs_new_protected:Npn \@@_draw_line_iii:nn #1 #2
5454 {
5455 \pgfrememberpicturepositiononpagetrue

132

5456 \pgfpointshapeborder { \@@_env: - #1 } { \@@_qpoint:n { #2 } }
5457 \dim_set_eq:NN \l_@@_x_initial_dim \pgf@x
5458 \dim_set_eq:NN \l_@@_y_initial_dim \pgf@y
5459 \pgfpointshapeborder { \@@_env: - #2 } { \@@_qpoint:n { #1 } }
5460 \dim_set_eq:NN \l_@@_x_final_dim \pgf@x
5461 \dim_set_eq:NN \l_@@_y_final_dim \pgf@y
5462 \@@_draw_line:
5463 }

The commands \Ldots, \Cdots, \Vdots, \Ddots, and \Iddots don’t use this command because they
have to do other settings (for example, the diagonal lines must be parallelized).

20 The command \RowStyle

\g_@@_row_style_tl may contain several instructions of the form:
\@@_if_row_less_than:nn { number } { instructions }

Then, \g_@@_row_style_tl will be inserted in all the cells of the array (and also in both components
of a \diagbox in a cell of in a mono-row block).
The test \@@_if_row_less_then:nn ensures that the instructions are inserted only if you are in a
row which is (still) in the scope of that instructions (which depends on the value of the key nb-rows
of \RowStyle).
That test will be active even in an expandable context because \@@_if_row_less_then:nn is not
protected.
#1 is the first row after the scope of the instructions in #2
However, both arguments are implicit because they are taken by curryfication.

5464 \cs_new:Npn \@@_if_row_less_than:nn { \int_compare:nNnT { \c@iRow } < }
5465 \cs_new:Npn \@@_if_col_greater_than:nn { \int_compare:nNnF { \c@jCol } < }

\@@_put_in_row_style will be used several times in \RowStyle.
5466 \cs_set_protected:Npn \@@_put_in_row_style:n #1
5467 {
5468 \tl_gput_right:Ne \g_@@_row_style_tl
5469 {

Be careful, \exp_not:N \@@_if_row_less_than:nn can’t be replaced by a protected version of
\@@_if_row_less_than:nn.

5470 \exp_not:N
5471 \@@_if_row_less_than:nn
5472 { \int_eval:n { \c@iRow + \l_@@_key_nb_rows_int } }

The \scan_stop: is mandatory (for ex. for the case where \rotate is used in the argument of
\RowStyle).

5473 {
5474 \exp_not:N
5475 \@@_if_col_greater_than:nn
5476 { \int_eval:n { \c@jCol } }
5477 { \exp_not:n { #1 } \scan_stop: }
5478 }
5479 }
5480 }
5481 \cs_generate_variant:Nn \@@_put_in_row_style:n { e }

5482 \keys_define:nn { nicematrix / RowStyle }
5483 {
5484 cell-space-top-limit .dim_set:N = \l_tmpa_dim ,
5485 cell-space-top-limit .value_required:n = true ,
5486 cell-space-bottom-limit .dim_set:N = \l_tmpb_dim ,
5487 cell-space-bottom-limit .value_required:n = true ,

133

5488 cell-space-limits .meta:n =
5489 {
5490 cell-space-top-limit = #1 ,
5491 cell-space-bottom-limit = #1 ,
5492 } ,
5493 color .tl_set:N = \l_@@_color_tl ,
5494 color .value_required:n = true ,
5495 bold .bool_set:N = \l_@@_bold_row_style_bool ,
5496 bold .default:n = true ,
5497 nb-rows .code:n =
5498 \str_if_eq:eeTF { #1 } { * }
5499 { \int_set:Nn \l_@@_key_nb_rows_int { 500 } }
5500 { \int_set:Nn \l_@@_key_nb_rows_int { #1 } } ,
5501 nb-rows .value_required:n = true ,
5502 fill .tl_set:N = \l_@@_fill_tl ,
5503 fill .value_required:n = true ,

In fine, the opacity will be applied by \pgfsetfillopacity.
5504 opacity .tl_set:N = \l_@@_opacity_tl ,
5505 opacity .value_required:n = true ,
5506 rowcolor .tl_set:N = \l_@@_fill_tl ,
5507 rowcolor .value_required:n = true ,
5508 rounded-corners .dim_set:N = \l_@@_rounded_corners_dim ,
5509 rounded-corners .default:n = 4 pt ,
5510 unknown .code:n =
5511 \@@_unknown_key:nn
5512 { nicematrix / RowStyle }
5513 { Unknown~key~for~RowStyle }
5514 }

5515 \NewDocumentCommand \@@_RowStyle:n { O { } m }
5516 {
5517 \group_begin:
5518 \tl_clear:N \l_@@_fill_tl
5519 \tl_clear:N \l_@@_opacity_tl
5520 \tl_clear:N \l_@@_color_tl
5521 \int_set_eq:NN \l_@@_key_nb_rows_int \c_one_int
5522 \dim_zero:N \l_@@_rounded_corners_dim
5523 \dim_zero:N \l_tmpa_dim
5524 \dim_zero:N \l_tmpb_dim
5525 \keys_set:nn { nicematrix / RowStyle } { #1 }

If the key fill (or its alias rowcolor) has been used.
5526 \tl_if_empty:NF \l_@@_fill_tl
5527 {
5528 \@@_add_opacity_to_fill:
5529 \tl_gput_right:Ne \g_@@_pre_code_before_tl
5530 {

The command \@@_exp_color_arg:No is fully expandable.
5531 \@@_exp_color_arg:No \@@_roundedrectanglecolor \l_@@_fill_tl
5532 { \int_use:N \c@iRow - \int_use:N \c@jCol }
5533 {
5534 \int_eval:n { \c@iRow + \l_@@_key_nb_rows_int - 1 }
5535 - *
5536 }
5537 { \dim_use:N \l_@@_rounded_corners_dim }
5538 }
5539 }
5540 \@@_put_in_row_style:n { \exp_not:n { #2 } }

\l_tmpa_dim is the value of the key cell-space-top-limit of \RowStyle.
5541 \dim_compare:nNnT { \l_tmpa_dim } > { \c_zero_dim }
5542 {

134

5543 \@@_put_in_row_style:e
5544 {
5545 \tl_gput_right:Nn \exp_not:N \g_@@_cell_after_hook_tl
5546 {

It’s not possible to change the following code by using \dim_set_eq:NN (because of expansion).
5547 \dim_set:Nn \l_@@_cell_space_top_limit_dim
5548 { \dim_use:N \l_tmpa_dim }
5549 }
5550 }
5551 }

\l_tmpb_dim is the value of the key cell-space-bottom-limit of \RowStyle.
5552 \dim_compare:nNnT { \l_tmpb_dim } > { \c_zero_dim }
5553 {
5554 \@@_put_in_row_style:e
5555 {
5556 \tl_gput_right:Nn \exp_not:N \g_@@_cell_after_hook_tl
5557 {
5558 \dim_set:Nn \l_@@_cell_space_bottom_limit_dim
5559 { \dim_use:N \l_tmpb_dim }
5560 }
5561 }
5562 }

\l_@@_color_tl is the value of the key color of \RowStyle.
5563 \tl_if_empty:NF \l_@@_color_tl
5564 {
5565 \@@_put_in_row_style:e
5566 {
5567 \mode_leave_vertical:
5568 \@@_color:n { \l_@@_color_tl }
5569 }
5570 }

\l_@@_bold_row_style_bool is the value of the key bold.
5571 \bool_if:NT \l_@@_bold_row_style_bool
5572 {
5573 \@@_put_in_row_style:n
5574 {
5575 \exp_not:n
5576 {
5577 \if_mode_math:
5578 $ % $
5579 \bfseries \boldmath
5580 $ % $
5581 \else:
5582 \bfseries \boldmath
5583 \fi:
5584 }
5585 }
5586 }
5587 \group_end:
5588 \g_@@_row_style_tl
5589 \ignorespaces
5590 }

The following commande must not be protected.
5591 \cs_new:Npn \@@_rounded_from_row:n #1
5592 {
5593 \@@_exp_color_arg:No \@@_roundedrectanglecolor \l_@@_fill_tl

In the following code, the “- 1” is not a subtraction.
5594 { \int_eval:n { #1 } - 1 }
5595 {

135

5596 \int_eval:n { \c@iRow + \l_@@_key_nb_rows_int - 1 }
5597 - \exp_not:n { \int_use:N \c@jCol }
5598 }
5599 { \dim_use:N \l_@@_rounded_corners_dim }
5600 }

21 Colors of cells, rows and columns

We want to avoid the thin white lines that are shown in some pdf viewers (eg: with the engine
MuPDF used by SumatraPDF). That’s why we try to draw rectangles of the same color in the same
instruction \pgfusepath { fill } (and they will be in the same instruction fill—coded f—in the
resulting pdf).
The commands \@@_rowcolor, \@@_columncolor, \@@_rectanglecolor and \@@_rowlistcolors
don’t directly draw the corresponding rectangles. Instead, they store their instructions color by
color:

• A sequence \g_@@_colors_seq will be built containing all the colors used by at least one of
these instructions. Each color may be prefixed by its color model (eg: [gray]{0.5}).

• For the color whose index in \g_@@_colors_seq is equal to i, a list of instructions which use that
color will be constructed in the token list \g_@@_color_i_tl. In that token list, the instructions
will be written using \@@_cartesian_color:nn and \@@_rectanglecolor:nn.

#1 is the color and #2 is an instruction using that color. Despite its name, the command
\@@_add_to_colors_seq:nn doesn’t only add a color to \g_@@_colors_seq: it also updates the
corresponding token list \g_@@_color_i_tl. We add in a global way because the final user may use
the instructions such as \cellcolor in a loop of pgffor in the \CodeBefore (and we recall that a loop
of pgffor is encapsulated in a group).

5601 \cs_new_protected:Npn \@@_add_to_colors_seq:nn #1 #2
5602 {

First, we look for the number of the color and, if it’s found, we store it in \l_tmpa_int. If the color
is not present in \l_@@_colors_seq, \l_tmpa_int will remain equal to 0.

5603 \int_zero:N \l_tmpa_int

We don’t take into account the colors like myserie!!+ because those colors are special color from a
\definecolorseries of xcolor. \str_if_in:nnF is mandatory: don’t use \tl_if_in:nnF.

5604 \str_if_in:nnF { #1 } { !! }
5605 {
5606 \seq_map_indexed_inline:Nn \g_@@_colors_seq

We use \str_if_eq:eeTF which is slightly faster than \tl_if_eq:nnTF.
5607 { \str_if_eq:eeT { #1 } { ##2 } { \int_set:Nn \l_tmpa_int { ##1 } } }
5608 }
5609 \int_if_zero:nTF { \l_tmpa_int }

First, the case where the color is a new color (not in the sequence).
5610 {
5611 \seq_gput_right:Nn \g_@@_colors_seq { #1 }
5612 \tl_gset:ce { g_@@_color _ \seq_count:N \g_@@_colors_seq _ tl } { #2 }
5613 }

Now, the case where the color is not a new color (the color is in the sequence at the position
\l_tmpa_int).

5614 { \tl_gput_right:ce { g_@@_color _ \int_use:N \l_tmpa_int _tl } { #2 } }
5615 }
5616 \cs_generate_variant:Nn \@@_add_to_colors_seq:nn { e }
5617 \cs_generate_variant:Nn \@@_add_to_colors_seq:nn { e e }

136

The following command must be used within a \pgfpicture.
5618 \cs_new_protected:Npn \@@_clip_with_rounded_corners:
5619 {
5620 \dim_compare:nNnT { \l_@@_tab_rounded_corners_dim } > { \c_zero_dim }
5621 {

The TeX group is for \pgfsetcornersarced (whose scope is the TeX scope).
5622 \group_begin:
5623 \pgfsetcornersarced
5624 {
5625 \pgfpoint
5626 { \l_@@_tab_rounded_corners_dim }
5627 { \l_@@_tab_rounded_corners_dim }
5628 }

Because we want nicematrix compatible with arrays constructed by array, the nodes for the rows and
columns (that is to say the nodes row-i and col-j) have not always the expected position, that is
to say, there is sometimes a slight shifting of something such as \arrayrulewidth. Now, for the
clipping, we have to change slightly the position of that clipping whether a rounded rectangle around
the array is required. That’s the point which is tested in the following line.

5629 \bool_if:NTF \l_@@_hvlines_bool
5630 {
5631 \pgfpathrectanglecorners
5632 {
5633 \pgfpointadd
5634 { \@@_qpoint:n { row-1 } }
5635 { \pgfpoint { 0.5 \arrayrulewidth } { \c_zero_dim } }
5636 }
5637 {
5638 \pgfpointadd
5639 {
5640 \@@_qpoint:n
5641 { \int_eval:n { \int_max:nn { \c@iRow } { \c@jCol } + 1 } }
5642 }
5643 { \pgfpoint \c_zero_dim { 0.5 \arrayrulewidth } }
5644 }
5645 }
5646 {
5647 \pgfpathrectanglecorners
5648 { \@@_qpoint:n { row-1 } }
5649 {
5650 \pgfpointadd
5651 {
5652 \@@_qpoint:n
5653 { \int_eval:n { \int_max:nn { \c@iRow } { \c@jCol } + 1 } }
5654 }
5655 { \pgfpoint \c_zero_dim \arrayrulewidth }
5656 }
5657 }
5658 \pgfusepath { clip }
5659 \group_end:

The TeX group was for \pgfsetcornersarced.
5660 }
5661 }

The macro \@@_actually_color: will actually fill all the rectangles, color by color (using the se-
quence \l_@@_colors_seq and all the token lists of the form \l_@@_color_i_tl).

5662 \cs_new_protected:Npn \@@_actually_color:
5663 {
5664 \pgfpicture
5665 \pgf@relevantforpicturesizefalse

137

If the final user has used the key rounded-corners for the environment {NiceTabular}, we will clip
to a rectangle with rounded corners before filling the rectangles.

5666 \@@_clip_with_rounded_corners:
5667 \seq_map_indexed_inline:Nn \g_@@_colors_seq
5668 {
5669 \int_compare:nNnTF { ##1 } = { \c_one_int }
5670 {
5671 \cs_set_eq:NN \@@_cartesian_path:n \@@_cartesian_path_nocolor:n
5672 \use:c { g_@@_color _ 1 _tl }
5673 \cs_set_eq:NN \@@_cartesian_path:n \@@_cartesian_path_normal:n
5674 }
5675 {
5676 \begin { pgfscope }
5677 \@@_color_opacity: ##2
5678 \use:c { g_@@_color _ ##1 _tl }
5679 \tl_gclear:c { g_@@_color _ ##1 _tl }
5680 \pgfusepath { fill }
5681 \end { pgfscope }
5682 }
5683 }
5684 \endpgfpicture
5685 }

The following command will extract the potential key opacity in its optional argument (between
square brackets) and (of course) then apply the command \color.

5686 \cs_new_protected:Npn \@@_color_opacity:
5687 {
5688 \peek_meaning:NTF [
5689 { \@@_color_opacity:w }
5690 { \@@_color_opacity:w [] }
5691 }

The command \@@_color_opacity:w takes in as argument only the optional argument. One may
consider that the second argument (the actual definition of the color) is provided by curryfication.

5692 \cs_new_protected:Npn \@@_color_opacity:w [#1]
5693 {
5694 \tl_clear:N \l_tmpa_tl
5695 \keys_set_known:nnN { nicematrix / color-opacity } { #1 } \l_tmpb_tl

\l_tmpa_tl (if not empty) is now the opacity and \l_tmpb_tl (if not empty) is now the colorimetric
space.

5696 \tl_if_empty:NF \l_tmpa_tl { \exp_args:No \pgfsetfillopacity \l_tmpa_tl }
5697 \tl_if_empty:NTF \l_tmpb_tl
5698 { \@declaredcolor }
5699 { \use:e { \exp_not:N \@undeclaredcolor [\l_tmpb_tl] } }
5700 }

The following set of keys is used by the command \@@_color_opacity:w.
5701 \keys_define:nn { nicematrix / color-opacity }
5702 {
5703 opacity .tl_set:N = \l_tmpa_tl ,
5704 opacity .value_required:n = true
5705 }

Here, we use \def instead of \tl_set:Nn for efficiency only.
5706 \cs_new_protected:Npn \@@_cartesian_color:nn #1 #2
5707 {
5708 \def \l_@@_rows_tl { #1 }
5709 \def \l_@@_cols_tl { #2 }
5710 \@@_cartesian_path:
5711 }

138

Here is an example : \@@_rowcolor {red!15} {1,3,5-7,10-}
5712 \NewDocumentCommand \@@_rowcolor { O { } m m }
5713 {
5714 \tl_if_blank:nF { #2 }
5715 {
5716 \@@_add_to_colors_seq:en
5717 { \tl_if_blank:nF { #1 } { [#1] } { #2 } }
5718 { \@@_cartesian_color:nn { #3 } { - } }
5719 }
5720 }

Here an example: \@@_columncolor:nn {red!15} {1,3,5-7,10-}
5721 \NewDocumentCommand \@@_columncolor { O { } m m }
5722 {
5723 \tl_if_blank:nF { #2 }
5724 {
5725 \@@_add_to_colors_seq:en
5726 { \tl_if_blank:nF { #1 } { [#1] } { #2 } }
5727 { \@@_cartesian_color:nn { - } { #3 } }
5728 }
5729 }

Here is an example: \@@_rectanglecolor{red!15}{2-3}{5-6}
5730 \NewDocumentCommand \@@_rectanglecolor { O { } m m m }
5731 {
5732 \tl_if_blank:nF { #2 }
5733 {
5734 \@@_add_to_colors_seq:en
5735 { \tl_if_blank:nF { #1 } { [#1] } { #2 } }
5736 { \@@_rectanglecolor:nnn { #3 } { #4 } { \c_zero_dim } }
5737 }
5738 }

The last argument is the radius of the corners of the rectangle.
5739 \NewDocumentCommand \@@_roundedrectanglecolor { O { } m m m m }
5740 {
5741 \tl_if_blank:nF { #2 }
5742 {
5743 \@@_add_to_colors_seq:en
5744 { \tl_if_blank:nF { #1 } { [#1] } { #2 } }
5745 { \@@_rectanglecolor:nnn { #3 } { #4 } { #5 } }
5746 }
5747 }

The last argument is the radius of the corners of the rectangle.
5748 \cs_new_protected:Npn \@@_rectanglecolor:nnn #1 #2 #3
5749 {
5750 \@@_cut_on_hyphen:w #1 \q_stop
5751 \tl_set_eq:NN \l_@@_tmpc_tl \l_tmpa_tl
5752 \tl_set_eq:NN \l_@@_tmpd_tl \l_tmpb_tl
5753 \@@_cut_on_hyphen:w #2 \q_stop
5754 \tl_set:Ne \l_@@_rows_tl { \l_@@_tmpc_tl - \l_tmpa_tl }
5755 \tl_set:Ne \l_@@_cols_tl { \l_@@_tmpd_tl - \l_tmpb_tl }

The command \@@_cartesian_path:n takes in two implicit arguments: \l_@@_cols_tl and
\l_@@_rows_tl.

5756 \@@_cartesian_path:n { #3 }
5757 }

139

Here is an example: \@@_cellcolor[rgb]{0.5,0.5,0}{2-3,3-4,4-5,5-6}
5758 \NewDocumentCommand \@@_cellcolor { O { } m m }
5759 {
5760 \clist_map_inline:nn { #3 }
5761 { \@@_rectanglecolor [#1] { #2 } { ##1 } { ##1 } }
5762 }

5763 \NewDocumentCommand \@@_chessboardcolors { O { } m m }
5764 {
5765 \int_step_inline:nn { \c@iRow }
5766 {
5767 \int_step_inline:nn { \c@jCol }
5768 {
5769 \int_if_even:nTF { ####1 + ##1 }
5770 { \@@_cellcolor [#1] { #2 } }
5771 { \@@_cellcolor [#1] { #3 } }
5772 { ##1 - ####1 }
5773 }
5774 }
5775 }

The command \@@_arraycolor (linked to \arraycolor at the beginning of the \CodeBefore) will
color the whole tabular (excepted the potential exterior rows and columns) and the cells in the
“corners”.

5776 \NewDocumentCommand \@@_arraycolor { O { } m }
5777 {
5778 \@@_rectanglecolor [#1] { #2 }
5779 { 1 - 1 }
5780 { \int_use:N \c@iRow - \int_use:N \c@jCol }
5781 }

5782 \keys_define:nn { nicematrix / rowcolors }
5783 {
5784 respect-blocks .bool_set:N = \l_@@_respect_blocks_bool ,
5785 respect-blocks .default:n = true ,
5786 cols .tl_set:N = \l_@@_cols_tl ,
5787 restart .bool_set:N = \l_@@_rowcolors_restart_bool ,
5788 restart .default:n = true ,
5789 unknown .code:n = \@@_error:n { Unknown~key~for~rowcolors }
5790 }

The command \rowcolors (accessible in the \CodeBefore) is inspired by the command \rowcolors
of the package xcolor (with the option table). However, the command \rowcolors of nicematrix has
not the optional argument of the command \rowcolors of xcolor.
Here is an example: \rowcolors{1}{blue!10}{}[respect-blocks].
In nicematrix, the command \@@_rowcolors appears as a special case of \@@_rowlistcolors.
#1 (optional) is the color space; #2 is a list of intervals of rows; #3 is the list of colors; #4 is for the
optional list of pairs key=value.

5791 \NewDocumentCommand \@@_rowlistcolors { O { } m m O { } }
5792 {

The group is for the options. \l_@@_colors_seq will be the list of colors.
5793 \group_begin:
5794 \seq_clear_new:N \l_@@_colors_seq
5795 \seq_set_split:Nnn \l_@@_colors_seq { , } { #3 }
5796 \tl_clear_new:N \l_@@_cols_tl
5797 \tl_set:Nn \l_@@_cols_tl { - }
5798 \keys_set:nn { nicematrix / rowcolors } { #4 }

140

The counter \l_@@_color_int will be the rank of the current color in the list of colors (modulo the
length of the list).

5799 \int_zero_new:N \l_@@_color_int
5800 \int_set_eq:NN \l_@@_color_int \c_one_int
5801 \bool_if:NT \l_@@_respect_blocks_bool
5802 {

We don’t want to take into account a block which is completely in the “first column” (number 0) or in
the “last column” and that’s why we filter the sequence of the blocks (in the sequence \l_tmpa_seq).

5803 \seq_set_eq:NN \l_tmpb_seq \g_@@_pos_of_blocks_seq
5804 \seq_set_filter:NNn \l_tmpa_seq \l_tmpb_seq
5805 { \@@_not_in_exterior_p:nnnnn ##1 }
5806 }
5807 \pgfpicture
5808 \pgf@relevantforpicturesizefalse

#2 is the list of intervals of rows.
5809 \clist_map_inline:nn { #2 }
5810 {
5811 \tl_set:Nn \l_tmpa_tl { ##1 }
5812 \tl_if_in:NnTF \l_tmpa_tl { - }
5813 { \@@_cut_on_hyphen:w ##1 \q_stop }
5814 { \tl_set:No \l_tmpb_tl { \int_use:N \c@iRow } }

Now, l_tmpa_tl and l_tmpb_tl are the first row and the last row of the interval of rows that we
have to treat. The counter \l_tmpa_int will be the index of the loop over the rows.

5815 \int_set:Nn \l_tmpa_int \l_tmpa_tl
5816 \int_set:Nn \l_@@_color_int
5817 { \bool_if:NTF \l_@@_rowcolors_restart_bool { 1 } { \l_tmpa_tl } }
5818 \int_set:Nn \l_@@_tmpc_int \l_tmpb_tl
5819 \int_do_until:nNnn \l_tmpa_int > \l_@@_tmpc_int
5820 {

We will compute in \l_tmpb_int the last row of the “block”.
5821 \int_set_eq:NN \l_tmpb_int \l_tmpa_int

If the key respect-blocks is in force, we have to adjust that value (of course).
5822 \bool_if:NT \l_@@_respect_blocks_bool
5823 {
5824 \seq_set_filter:NNn \l_tmpb_seq \l_tmpa_seq
5825 { \@@_intersect_our_row_p:nnnnn ####1 }
5826 \seq_map_inline:Nn \l_tmpb_seq { \@@_rowcolors_i:nnnnn ####1 }

Now, the last row of the block is computed in \l_tmpb_int.
5827 }
5828 \tl_set:Ne \l_@@_rows_tl
5829 { \int_use:N \l_tmpa_int - \int_use:N \l_tmpb_int }

\l_@@_tmpc_tl will be the color that we will use.
5830 \tl_set:Ne \l_@@_color_tl
5831 {
5832 \@@_color_index:n
5833 {
5834 \int_mod:nn
5835 { \l_@@_color_int - 1 }
5836 { \seq_count:N \l_@@_colors_seq }
5837 + 1
5838 }
5839 }
5840 \tl_if_empty:NF \l_@@_color_tl
5841 {
5842 \@@_add_to_colors_seq:ee
5843 { \tl_if_blank:nF { #1 } { [#1] } { \l_@@_color_tl } }
5844 { \@@_cartesian_color:nn { \l_@@_rows_tl } { \l_@@_cols_tl } }
5845 }
5846 \int_incr:N \l_@@_color_int

141

5847 \int_set:Nn \l_tmpa_int { \l_tmpb_int + 1 }
5848 }
5849 }
5850 \endpgfpicture
5851 \group_end:
5852 }

The command \@@_color_index:n peeks in \l_@@_colors_seq the color at the index #1. However,
if that color is the symbol =, the previous one is poken. This macro is recursive.

5853 \cs_new:Npn \@@_color_index:n #1
5854 {

Be careful: this command \@@_color_index:n must be “fully expandable”.
5855 \str_if_eq:eeTF { \seq_item:Nn \l_@@_colors_seq { #1 } } { = }
5856 { \@@_color_index:n { #1 - 1 } }
5857 { \seq_item:Nn \l_@@_colors_seq { #1 } }
5858 }

The command \rowcolors (available in the \CodeBefore) is a specialisation of the more general
command \rowlistcolors. The last argument, which is a optional argument between square brackets
is provided by curryfication.

5859 \NewDocumentCommand \@@_rowcolors { O { } m m m }
5860 { \@@_rowlistcolors [#1] { #2 } { { #3 } , { #4 } } }

The braces around #3 and #4 are mandatory.

5861 \cs_new_protected:Npn \@@_rowcolors_i:nnnnn #1 #2 #3 #4 #5
5862 {
5863 \int_compare:nNnT { #3 } > { \l_tmpb_int }
5864 { \int_set:Nn \l_tmpb_int { #3 } }
5865 }

5866 \prg_new_conditional:Nnn \@@_not_in_exterior:nnnnn { p }
5867 {
5868 \int_if_zero:nTF { #4 }
5869 { \prg_return_false: }
5870 {
5871 \int_compare:nNnTF { #2 } > { \c@jCol }
5872 { \prg_return_false: }
5873 { \prg_return_true: }
5874 }
5875 }

The following command return true when the block intersects the row \l_tmpa_int.
5876 \prg_new_conditional:Nnn \@@_intersect_our_row:nnnnn { p }
5877 {
5878 \int_compare:nNnTF { #1 } > { \l_tmpa_int }
5879 { \prg_return_false: }
5880 {
5881 \int_compare:nNnTF { \l_tmpa_int } > { #3 }
5882 { \prg_return_false: }
5883 { \prg_return_true: }
5884 }
5885 }

The following command uses two implicit arguments: \l_@@_rows_tl and \l_@@_cols_tl which are
specifications for a set of rows and a set of columns. It creates a path but does not fill it. It must
be filled by another command after. The argument is the radius of the corners. We define below a
command \@@_cartesian_path: which corresponds to a value 0 pt for the radius of the corners.

142

This command is, in particular, used in \@@_rectanglecolor:nnn (used in \@@_rectanglecolor,
itself used in \@@_cellcolor).

5886 \cs_new_protected:Npn \@@_cartesian_path_normal:n #1
5887 {
5888 \dim_compare:nNnTF { #1 } = { \c_zero_dim }
5889 {
5890 \bool_if:NTF \l_@@_nocolor_used_bool
5891 { \@@_cartesian_path_normal_ii: }
5892 {
5893 \clist_if_empty:NTF \l_@@_corners_cells_clist
5894 { \@@_cartesian_path_normal_i:n { #1 } }
5895 { \@@_cartesian_path_normal_ii: }
5896 }
5897 }
5898 { \@@_cartesian_path_normal_i:n { #1 } }
5899 }

First, the situation where is a rectangular zone of cells will be colored as a whole (in the instructions
of the resulting pdf). The argument is the radius of the corners.

5900 \cs_new_protected:Npn \@@_cartesian_path_normal_i:n #1
5901 {
5902 \pgfsetcornersarced { \pgfpoint { #1 } { #1 } }

We begin the loop over the columns.
5903 \clist_map_inline:Nn \l_@@_cols_tl
5904 {

We use \def instead of \tl_set:Nn for efficiency only.
5905 \def \l_tmpa_tl { ##1 }
5906 \tl_if_in:NnTF \l_tmpa_tl { - }
5907 { \@@_cut_on_hyphen:w ##1 \q_stop }
5908 { \def \l_tmpb_tl { ##1 } }
5909 \tl_if_empty:NTF \l_tmpa_tl
5910 { \def \l_tmpa_tl { 1 } }
5911 {
5912 \str_if_eq:eeT { \l_tmpa_tl } { * }
5913 { \def \l_tmpa_tl { 1 } }
5914 }
5915 \int_compare:nNnT { \l_tmpa_tl } > { \g_@@_col_total_int }
5916 { \@@_error:n { Invalid~col~number } }
5917 \tl_if_empty:NTF \l_tmpb_tl
5918 { \tl_set:No \l_tmpb_tl { \int_use:N \c@jCol } }
5919 {
5920 \str_if_eq:eeT { \l_tmpb_tl } { * }
5921 { \tl_set:No \l_tmpb_tl { \int_use:N \c@jCol } }
5922 }
5923 \int_compare:nNnT { \l_tmpb_tl } > { \g_@@_col_total_int }
5924 { \tl_set:No \l_tmpb_tl { \int_use:N \g_@@_col_total_int } }

\l_@@_tmpc_tl will contain the number of column.
5925 \tl_set_eq:NN \l_@@_tmpc_tl \l_tmpa_tl
5926 \@@_qpoint:n { col - \l_tmpa_tl }
5927 \int_compare:nNnTF { \l_@@_first_col_int } = { \l_tmpa_tl }
5928 { \dim_set:Nn \l_@@_tmpc_dim { \pgf@x - 0.5 \arrayrulewidth } }
5929 { \dim_set:Nn \l_@@_tmpc_dim { \pgf@x + 0.5 \arrayrulewidth } }
5930 \@@_qpoint:n { col - \int_eval:n { \l_tmpb_tl + 1 } }
5931 \dim_set:Nn \l_tmpa_dim { \pgf@x + 0.5 \arrayrulewidth }

We begin the loop over the rows. We use \def instead of \tl_set:Nn for efficiency only.
5932 \clist_map_inline:Nn \l_@@_rows_tl
5933 {
5934 \def \l_tmpa_tl { ####1 }
5935 \tl_if_in:NnTF \l_tmpa_tl { - }
5936 { \@@_cut_on_hyphen:w ####1 \q_stop }

143

5937 { \@@_cut_on_hyphen:w ####1 - ####1 \q_stop }
5938 \tl_if_empty:NTF \l_tmpa_tl
5939 { \def \l_tmpa_tl { 1 } }
5940 {
5941 \str_if_eq:eeT { \l_tmpa_tl } { * }
5942 { \def \l_tmpa_tl { 1 } }
5943 }
5944 \tl_if_empty:NTF \l_tmpb_tl
5945 { \tl_set:No \l_tmpb_tl { \int_use:N \c@iRow } }
5946 {
5947 \str_if_eq:eeT { \l_tmpb_tl } { * }
5948 { \tl_set:No \l_tmpb_tl { \int_use:N \c@iRow } }
5949 }
5950 \int_compare:nNnT { \l_tmpa_tl } > { \g_@@_row_total_int }
5951 { \@@_error:n { Invalid~row~number } }
5952 \int_compare:nNnT { \l_tmpb_tl } > { \g_@@_row_total_int }
5953 { \tl_set:No \l_tmpb_tl { \int_use:N \g_@@_row_total_int } }

Now, the numbers of both rows are in \l_tmpa_tl and \l_tmpb_tl.
5954 \cs_if_exist:cF
5955 { @@ _ nocolor _ \l_tmpa_tl - \l_@@_tmpc_tl }
5956 {
5957 \@@_qpoint:n { row - \int_eval:n { \l_tmpb_tl + 1 } }
5958 \dim_set:Nn \l_tmpb_dim { \pgf@y + 0.5 \arrayrulewidth }
5959 \@@_qpoint:n { row - \l_tmpa_tl }
5960 \dim_set:Nn \l_@@_tmpd_dim { \pgf@y + 0.5 \arrayrulewidth }
5961 \pgfpathrectanglecorners
5962 { \pgfpoint \l_@@_tmpc_dim \l_@@_tmpd_dim }
5963 { \pgfpoint \l_tmpa_dim \l_tmpb_dim }
5964 }
5965 }
5966 }
5967 }

Now, the case where the cells will be colored cell by cell (it’s mandatory for example if the key
corners is used).

5968 \cs_new_protected:Npn \@@_cartesian_path_normal_ii:
5969 {
5970 \@@_expand_clist:NN \l_@@_cols_tl \c@jCol
5971 \@@_expand_clist:NN \l_@@_rows_tl \c@iRow

We begin the loop over the columns.
5972 \clist_map_inline:Nn \l_@@_cols_tl
5973 {
5974 \@@_qpoint:n { col - ##1 }
5975 \int_compare:nNnTF { \l_@@_first_col_int } = { ##1 }
5976 { \dim_set:Nn \l_@@_tmpc_dim { \pgf@x - 0.5 \arrayrulewidth } }
5977 { \dim_set:Nn \l_@@_tmpc_dim { \pgf@x + 0.5 \arrayrulewidth } }
5978 \@@_qpoint:n { col - \int_eval:n { ##1 + 1 } }
5979 \dim_set:Nn \l_tmpa_dim { \pgf@x + 0.5 \arrayrulewidth }

We begin the loop over the rows.
5980 \clist_map_inline:Nn \l_@@_rows_tl
5981 {
5982 \@@_if_in_corner:nF { ####1 - ##1 }
5983 {
5984 \@@_qpoint:n { row - \int_eval:n { ####1 + 1 } }
5985 \dim_set:Nn \l_tmpb_dim { \pgf@y + 0.5 \arrayrulewidth }
5986 \@@_qpoint:n { row - ####1 }
5987 \dim_set:Nn \l_@@_tmpd_dim { \pgf@y + 0.5 \arrayrulewidth }
5988 \cs_if_exist:cF { @@ _ nocolor _ ####1 - ##1 }
5989 {
5990 \pgfpathrectanglecorners
5991 { \pgfpoint \l_@@_tmpc_dim \l_@@_tmpd_dim }
5992 { \pgfpoint \l_tmpa_dim \l_tmpb_dim }

144

5993 }
5994 }
5995 }
5996 }
5997 }

The following command corresponds to a radius of the corners equal to 0 pt. This command is used
by the commands \@@_rowcolors, \@@_columncolor and \@@_rowcolor:n (used in \@@_rowcolor).

5998 \cs_new_protected:Npn \@@_cartesian_path: { \@@_cartesian_path:n \c_zero_dim }

Despite its name, the following command does not create a PGF path. It declares as colored by
the “empty color” all the cells in what would be the path. Hence, the other coloring instructions of
nicematrix won’t put color in those cells. the

5999 \cs_new_protected:Npn \@@_cartesian_path_nocolor:n #1
6000 {
6001 \bool_set_true:N \l_@@_nocolor_used_bool
6002 \@@_expand_clist:NN \l_@@_cols_tl \c@jCol
6003 \@@_expand_clist:NN \l_@@_rows_tl \c@iRow

We begin the loop over the columns.
6004 \clist_map_inline:Nn \l_@@_rows_tl
6005 {
6006 \clist_map_inline:Nn \l_@@_cols_tl
6007 { \cs_set_nopar:cpn { @@ _ nocolor _ ##1 - ####1 } { } }
6008 }
6009 }

The following command will be used only with \l_@@_cols_tl and \c@jCol (first case) or with
\l_@@_rows_tl and \c@iRow (second case). For instance, with \l_@@_cols_tl equal to 2,4-6,8-*
and \c@jCol equal to 10, the clist \l_@@_cols_tl will be replaced by 2,4,5,6,8,9,10.

6010 \cs_new_protected:Npn \@@_expand_clist:NN #1 #2
6011 {
6012 \clist_set_eq:NN \l_tmpa_clist #1
6013 \clist_clear:N #1
6014 \clist_map_inline:Nn \l_tmpa_clist
6015 {

We use \def instead of \tl_set:Nn for efficiency only.
6016 \def \l_tmpa_tl { ##1 }
6017 \tl_if_in:NnTF \l_tmpa_tl { - }
6018 { \@@_cut_on_hyphen:w ##1 \q_stop }
6019 { \@@_cut_on_hyphen:w ##1 - ##1 \q_stop }
6020 \bool_lazy_or:nnT
6021 { \str_if_eq_p:ee { \l_tmpa_tl } { * } }
6022 { \tl_if_blank_p:o \l_tmpa_tl }
6023 { \def \l_tmpa_tl { 1 } }
6024 \bool_lazy_or:nnT
6025 { \str_if_eq_p:ee { \l_tmpb_tl } { * } }
6026 { \tl_if_blank_p:o \l_tmpb_tl }
6027 { \tl_set:No \l_tmpb_tl { \int_use:N #2 } }
6028 \int_compare:nNnT { \l_tmpb_tl } > { #2 }
6029 { \tl_set:No \l_tmpb_tl { \int_use:N #2 } }
6030 \int_step_inline:nnn { \l_tmpa_tl } { \l_tmpb_tl }
6031 { \clist_put_right:Nn #1 { ####1 } }
6032 }
6033 }

The following command will be linked to \cellcolor in the tabular.
6034 \NewDocumentCommand \@@_cellcolor_tabular { O { } m }
6035 {
6036 \tl_gput_right:Ne \g_@@_pre_code_before_tl
6037 {

145

We must not expand the color (#2) because the color may contain the token ! which may be activated
by some packages (ex.: babel with the option french on latex and pdflatex).

6038 \@@_cellcolor [#1] { \exp_not:n { #2 } }
6039 { \int_use:N \c@iRow - \int_use:N \c@jCol }
6040 }
6041 \ignorespaces
6042 }

6043 \NewDocumentCommand \@@_cellcolor_error { O { } m }
6044 { \@@_error:n { cellcolor~in~Block } }
6045 % \end{macrocode}
6046 %
6047 % \begin{macrocode}
6048 \NewDocumentCommand \@@_rowcolor_error { O { } m }
6049 { \@@_error:n { rowcolor~in~Block } }
6050 % \end{macrocode}
6051 %
6052 % \bigskip
6053 % The following command will be linked to |\rowcolor| in the tabular.
6054 % \begin{macrocode}
6055 \NewDocumentCommand \@@_rowcolor_tabular { O { } m }
6056 {
6057 \tl_gput_right:Ne \g_@@_pre_code_before_tl
6058 {
6059 \@@_rectanglecolor [#1] { \exp_not:n { #2 } }
6060 { \int_use:N \c@iRow - \int_use:N \c@jCol }
6061 { \int_use:N \c@iRow - \exp_not:n { \int_use:N \c@jCol } }
6062 }
6063 \ignorespaces
6064 }

The following command will be linked to \rowcolors in the tabular. The last argument (an optional
argument between square brackets is taken by curryfication).

6065 \NewDocumentCommand { \@@_rowcolors_tabular } { O { } m m }
6066 { \@@_rowlistcolors_tabular [#1] { { #2 } , { #3 } } }

The braces around #2 and #3 are mandatory.

The following command will be linked to \rowlistcolors in the tabular.
6067 \NewDocumentCommand { \@@_rowlistcolors_tabular } { O { } m O { } }
6068 {

A use of \rowlistcolors in the tabular erases the instructions \rowlistcolors which are in force.
However, it’s possible to put several instructions \rowlistcolors in the same row of a tabular: it may
be useful when those instructions \rowlistcolors concerns different columns of the tabular (thanks
to the key cols of \rowlistcolors). That’s why we store the different instructions \rowlistcolors
which are in force in a sequence \g_@@_rowlistcolors_seq. Now, we will filter that sequence to
keep only the elements which have been issued on the actual row. We will store the elements to keep
in the \g_tmpa_seq.

6069 \seq_gclear:N \g_tmpa_seq
6070 \seq_map_inline:Nn \g_@@_rowlistcolors_seq
6071 { \@@_rowlistcolors_tabular:nnnn ##1 }
6072 \seq_gset_eq:NN \g_@@_rowlistcolors_seq \g_tmpa_seq

Now, we add to the sequence \g_@@_rowlistcolors_seq (which is the list of the commands
\rowlistcolors which are in force) the current instruction \rowlistcolors.

6073 \seq_gput_right:Ne \g_@@_rowlistcolors_seq
6074 {
6075 { \int_use:N \c@iRow }
6076 { \exp_not:n { #1 } }
6077 { \exp_not:n { #2 } }
6078 { restart , cols = \int_use:N \c@jCol - , \exp_not:n { #3 } }
6079 }

146

6080 \ignorespaces
6081 }

The following command will be applied to each component of \g_@@_rowlistcolors_seq. Each
component of that sequence is a kind of 4-uple of the form {#1}{#2}{#3}{#4}.
#1 is the number of the row where the command \rowlistcolors has been issued.
#2 is the colorimetric space (optional argument of the \rowlistcolors).
#3 is the list of colors (mandatory argument of \rowlistcolors).
#4 is the list of key=value pairs (last optional argument of \rowlistcolors).

6082 \cs_new_protected:Npn \@@_rowlistcolors_tabular:nnnn #1 #2 #3 #4
6083 {
6084 \int_compare:nNnTF { #1 } = { \c@iRow }

We (temporary) keep in memory in \g_tmpa_seq the instructions which will still be in force after
the current instruction (because they have been issued in the same row of the tabular).

6085 { \seq_gput_right:Nn \g_tmpa_seq { { #1 } { #2 } { #3 } { #4 } } }
6086 {
6087 \tl_gput_right:Ne \g_@@_pre_code_before_tl
6088 {
6089 \@@_rowlistcolors
6090 [\exp_not:n { #2 }]
6091 { #1 - \int_eval:n { \c@iRow - 1 } }
6092 { \exp_not:n { #3 } }
6093 [\exp_not:n { #4 }]
6094 }
6095 }
6096 }

The following command will be used at the end of the tabular, just before the execution of the
\g_@@_pre_code_before_tl. It clears the sequence \g_@@_rowlistcolors_seq of all the commands
\rowlistcolors which are (still) in force.

6097 \cs_new_protected:Npn \@@_clear_rowlistcolors_seq:
6098 {
6099 \seq_map_inline:Nn \g_@@_rowlistcolors_seq
6100 { \@@_rowlistcolors_tabular_ii:nnnn ##1 }
6101 \seq_gclear:N \g_@@_rowlistcolors_seq
6102 }

6103 \cs_new_protected:Npn \@@_rowlistcolors_tabular_ii:nnnn #1 #2 #3 #4
6104 {
6105 \tl_gput_right:Nn \g_@@_pre_code_before_tl
6106 { \@@_rowlistcolors [#2] { #1 } { #3 } [#4] }
6107 }

The first mandatory argument of the command \@@_rowlistcolors which is writtent in the
pre-\CodeBefore is of the form i: it means that the command must be applied to all the rows
from the row i until the end of the tabular.

6108 \NewDocumentCommand \@@_columncolor_preamble { O { } m }
6109 {

With the following line, we test whether the cell is the first one we encounter in its column (don’t
forget that some rows may be incomplete).

6110 \int_compare:nNnT { \c@jCol } > { \g_@@_col_total_int }
6111 {

You use gput_left because we want the specification of colors for the columns drawn before the
specifications of color for the rows (and the cells). Be careful: maybe this is not effective since we
have an analyze of the instructions in the \CodeBefore in order to fill color by color (to avoid the
thin white lines).

6112 \tl_gput_left:Ne \g_@@_pre_code_before_tl

147

6113 {
6114 \exp_not:N \columncolor [#1]
6115 { \exp_not:n { #2 } } { \int_use:N \c@jCol }
6116 }
6117 }
6118 }

6119 \cs_new_protected:Npn \@@_EmptyColumn:n #1
6120 {
6121 \clist_map_inline:nn { #1 }
6122 {
6123 \seq_gput_right:Nn \g_@@_future_pos_of_blocks_seq
6124 { { -2 } { #1 } { 98 } { ##1 } { } } % 98 and not 99 !
6125 \columncolor { nocolor } { ##1 }
6126 }
6127 }

6128 \cs_new_protected:Npn \@@_EmptyRow:n #1
6129 {
6130 \clist_map_inline:nn { #1 }
6131 {
6132 \seq_gput_right:Nn \g_@@_future_pos_of_blocks_seq
6133 { { ##1 } { -2 } { ##1 } { 98 } { } } % 98 and not 99 !
6134 \rowcolor { nocolor } { ##1 }
6135 }
6136 }

22 The vertical and horizontal rules

OnlyMainNiceMatrix

We give to the user the possibility to define new types of columns (with \newcolumntype of array) for
special vertical rules (e.g. rules thicker than the standard ones) which will not extend in the potential
exterior rows of the array.
We provide the command \OnlyMainNiceMatrix in that goal. However, that command must be
no-op outside the environments of nicematrix (and so the user will be allowed to use the same new
type of column in the environments of nicematrix and in the standard environments of array).
That’s why we provide first a global definition of \OnlyMainNiceMatrix.

6137 \cs_set_eq:NN \OnlyMainNiceMatrix \use:n

Another definition of \OnlyMainNiceMatrix will be linked to the command in the environments of
nicematrix. Here is that definition, called \@@_OnlyMainNiceMatrix:n.

6138 \cs_new_protected:Npn \@@_OnlyMainNiceMatrix:n #1
6139 {
6140 \int_if_zero:nTF { \l_@@_first_col_int }
6141 { \@@_OnlyMainNiceMatrix_i:n { #1 } }
6142 {
6143 \int_if_zero:nTF { \c@jCol }
6144 {
6145 \int_compare:nNnF { \c@iRow } = { -1 }
6146 {
6147 \int_compare:nNnF { \c@iRow } = { \l_@@_last_row_int - 1 }
6148 { #1 }
6149 }
6150 }
6151 { \@@_OnlyMainNiceMatrix_i:n { #1 } }
6152 }
6153 }

148

This definition may seem complicated but we must remind that the number of row \c@iRow is
incremented in the first cell of the row, after a potential vertical rule on the left side of the first cell.
The command \@@_OnlyMainNiceMatrix_i:n is only a short-cut which is used twice in the above
command. This command must not be protected.

6154 \cs_new_protected:Npn \@@_OnlyMainNiceMatrix_i:n #1
6155 {
6156 \int_if_zero:nF { \c@iRow }
6157 {
6158 \int_compare:nNnF { \c@iRow } = { \l_@@_last_row_int }
6159 {
6160 \int_compare:nNnT { \c@jCol } > { \c_zero_int }
6161 { \bool_if:NF \l_@@_in_last_col_bool { #1 } }
6162 }
6163 }
6164 }

Remember that \c@iRow is not always inferior to \l_@@_last_row_int because \l_@@_last_row_int
may be equal to −2 or −1 (we can’t write \int_compare:nNnT \c@iRow < \l_@@_last_row_int).

The following command will be used for \Toprule, \BottomRule and \MidRule.
6165 \cs_new:Npn \@@_tikz_booktabs_loaded:nn #1 #2
6166 {
6167 \IfPackageLoadedTF { tikz }
6168 {
6169 \IfPackageLoadedTF { booktabs }
6170 { #2 }
6171 { \@@_error:nn { TopRule~without~booktabs } { #1 } }
6172 }
6173 { \@@_error:nn { TopRule~without~tikz } { #1 } }
6174 }

6175 \NewExpandableDocumentCommand { \@@_TopRule } { }
6176 { \@@_tikz_booktabs_loaded:nn { \TopRule } { \@@_TopRule_i: } }

6177 \cs_new:Npn \@@_TopRule_i:
6178 {
6179 \noalign \bgroup
6180 \peek_meaning:NTF [
6181 { \@@_TopRule_ii: }
6182 { \@@_TopRule_ii: [\dim_use:N \heavyrulewidth] }
6183 }

6184 \NewDocumentCommand \@@_TopRule_ii: { o }
6185 {
6186 \tl_gput_right:Ne \g_@@_pre_code_after_tl
6187 {
6188 \@@_hline:n
6189 {
6190 position = \int_eval:n { \c@iRow + 1 } ,
6191 tikz =
6192 {
6193 line~width = #1 ,
6194 yshift = 0.25 \arrayrulewidth ,
6195 shorten~< = - 0.5 \arrayrulewidth
6196 } ,
6197 total-width = #1
6198 }
6199 }
6200 \skip_vertical:n { \belowrulesep + #1 }
6201 \egroup
6202 }

6203 \NewExpandableDocumentCommand { \@@_BottomRule } { }
6204 { \@@_tikz_booktabs_loaded:nn { \BottomRule } { \@@_BottomRule_i: } }

149

6205 \cs_new:Npn \@@_BottomRule_i:
6206 {
6207 \noalign \bgroup
6208 \peek_meaning:NTF [
6209 { \@@_BottomRule_ii: }
6210 { \@@_BottomRule_ii: [\dim_use:N \heavyrulewidth] }
6211 }

6212 \NewDocumentCommand \@@_BottomRule_ii: { o }
6213 {
6214 \tl_gput_right:Ne \g_@@_pre_code_after_tl
6215 {
6216 \@@_hline:n
6217 {
6218 position = \int_eval:n { \c@iRow + 1 } ,
6219 tikz =
6220 {
6221 line~width = #1 ,
6222 yshift = 0.25 \arrayrulewidth ,
6223 shorten~< = - 0.5 \arrayrulewidth
6224 } ,
6225 total-width = #1 ,
6226 }
6227 }
6228 \skip_vertical:N \aboverulesep
6229 \@@_create_row_node_i:
6230 \skip_vertical:n { #1 }
6231 \egroup
6232 }

6233 \NewExpandableDocumentCommand { \@@_MidRule } { }
6234 { \@@_tikz_booktabs_loaded:nn { \MidRule } { \@@_MidRule_i: } }

6235 \cs_new:Npn \@@_MidRule_i:
6236 {
6237 \noalign \bgroup
6238 \peek_meaning:NTF [
6239 { \@@_MidRule_ii: }
6240 { \@@_MidRule_ii: [\dim_use:N \lightrulewidth] }
6241 }

6242 \NewDocumentCommand \@@_MidRule_ii: { o }
6243 {
6244 \skip_vertical:N \aboverulesep
6245 \@@_create_row_node_i:
6246 \tl_gput_right:Ne \g_@@_pre_code_after_tl
6247 {
6248 \@@_hline:n
6249 {
6250 position = \int_eval:n { \c@iRow + 1 } ,
6251 tikz =
6252 {
6253 line~width = #1 ,
6254 yshift = 0.25 \arrayrulewidth ,
6255 shorten~< = - 0.5 \arrayrulewidth
6256 } ,
6257 total-width = #1 ,
6258 }
6259 }
6260 \skip_vertical:n { \belowrulesep + #1 }
6261 \egroup
6262 }

150

General system for drawing rules

When a command, environment or “subsystem” of nicematrix wants to draw a rule, it will write in the
internal \CodeAfter a command \@@_vline:n or \@@_hline:n. Both commands take in as argument
a list of key=value pairs. That list will first be analyzed with the following set of keys. However,
unknown keys will be analyzed further with another set of keys.

6263 \keys_define:nn { nicematrix / Rules }
6264 {
6265 position .int_set:N = \l_@@_position_int ,
6266 position .value_required:n = true ,
6267 start .int_set:N = \l_@@_start_int ,
6268 end .code:n =
6269 \bool_lazy_or:nnTF
6270 { \tl_if_empty_p:n { #1 } }
6271 { \str_if_eq_p:ee { #1 } { last } }
6272 { \int_set_eq:NN \l_@@_end_int \c@jCol }
6273 { \int_set:Nn \l_@@_end_int { #1 } }
6274 }

It’s possible that the rule won’t be drawn continuously from start to end because of the blocks
(created with the command \Block), the virtual blocks (created by \Cdots, etc.), etc. That’s why an
analysis is done and the rule is cut in small rules which will actually be drawn. The small continuous
rules will be drawn by \@@_vline_ii: and \@@_hline_ii:. Those commands use the following set
of keys.

6275 \keys_define:nn { nicematrix / RulesBis }
6276 {
6277 multiplicity .int_set:N = \l_@@_multiplicity_int ,
6278 multiplicity .initial:n = 1 ,
6279 dotted .bool_set:N = \l_@@_dotted_bool ,
6280 dotted .initial:n = false ,
6281 dotted .default:n = true ,

We want that, even when the rule has been defined with TikZ by the key tikz, the user has still the
possibility to change the color of the rule with the key color (in the command \Hline, not in the
key tikz of the command \Hline). The main use is, when the user has defined its own command
\MyDashedLine by \newcommand{\MyDashedRule}{\Hline[tikz=dashed]}, to give the ability to
write \MyDashedRule[color=red].

6282 color .code:n =
6283 \@@_set_CTarc:n { #1 }
6284 \tl_set:Nn \l_@@_rule_color_tl { #1 } ,
6285 color .value_required:n = true ,
6286 sep-color .code:n = \@@_set_CTdrsc:n { #1 } ,
6287 sep-color .value_required:n = true ,

If the user uses the key tikz, the rule (or more precisely: the different sub-rules since a rule may be
broken by blocks or others) will be drawn with Tikz.

6288 tikz .code:n =
6289 \IfPackageLoadedTF { tikz }
6290 { \clist_put_right:Nn \l_@@_tikz_rule_tl { #1 } }
6291 { \@@_error:n { tikz~without~tikz } } ,
6292 tikz .value_required:n = true ,
6293 total-width .dim_set:N = \l_@@_rule_width_dim ,
6294 total-width .value_required:n = true ,
6295 width .meta:n = { total-width = #1 } ,
6296 unknown .code:n =
6297 \@@_unknown_key:nn
6298 { nicematrix / RulesBis }
6299 { Unknown~key~for~RulesBis }
6300 }

151

The vertical rules

The following command will be executed in the internal \CodeAfter. The argument #1 is a list of
key=value pairs.

6301 \cs_new_protected:Npn \@@_vline:n #1
6302 {

The group is for the options.
6303 \group_begin:
6304 \int_set_eq:NN \l_@@_end_int \c@iRow
6305 \keys_set_known:nnN { nicematrix / Rules } { #1 } \l_@@_other_keys_tl

The following test is for the case where the user does not use all the columns specified in the preamble
of the environment (for instance, a preamble of |c|c|c| but only two columns used).

6306 \int_compare:nNnT { \l_@@_position_int } < { \c@jCol + 2 }
6307 \@@_vline_i:
6308 \group_end:
6309 }

6310 \cs_new_protected:Npn \@@_vline_i:
6311 {

\l_tmpa_tl is the number of row and \l_tmpb_tl the number of column. When we have found a
row corresponding to a rule to draw, we note its number in \l_@@_tmpc_tl.

6312 \tl_set:No \l_tmpb_tl { \int_use:N \l_@@_position_int }
6313 \int_step_variable:nnNn \l_@@_start_int \l_@@_end_int
6314 \l_tmpa_tl
6315 {

The boolean \g_tmpa_bool indicates whether the small vertical rule will be drawn. If we find that it
is in a block (a real block, created by \Block or a virtual block corresponding to a dotted line, created
by \Cdots, \Vdots, etc.), we will set \g_tmpa_bool to false and the small vertical rule won’t be
drawn.

6316 \bool_gset_true:N \g_tmpa_bool

6317 \seq_map_inline:Nn \g_@@_pos_of_blocks_seq
6318 { \@@_test_vline_in_block:nnnnn ##1 }
6319 \seq_map_inline:Nn \g_@@_pos_of_xdots_seq
6320 { \@@_test_vline_in_block:nnnnn ##1 }
6321 \seq_map_inline:Nn \g_@@_pos_of_stroken_blocks_seq
6322 { \@@_test_vline_in_stroken_block:nnnn ##1 }
6323 \clist_if_empty:NF \l_@@_corners_clist { \@@_test_in_corner_v: }
6324 \bool_if:NTF \g_tmpa_bool
6325 {
6326 \int_if_zero:nT { \l_@@_local_start_int }

We keep in memory that we have a rule to draw. \l_@@_local_start_int will be the starting row
of the rule that we will have to draw.

6327 { \int_set:Nn \l_@@_local_start_int \l_tmpa_tl }
6328 }
6329 {
6330 \int_compare:nNnT { \l_@@_local_start_int } > { \c_zero_int }
6331 {
6332 \int_set:Nn \l_@@_local_end_int { \l_tmpa_tl - 1 }
6333 \@@_vline_ii:
6334 \int_zero:N \l_@@_local_start_int
6335 }
6336 }
6337 }
6338 \int_compare:nNnT { \l_@@_local_start_int } > { \c_zero_int }
6339 {
6340 \int_set_eq:NN \l_@@_local_end_int \l_@@_end_int
6341 \@@_vline_ii:
6342 }
6343 }

152

6344 \cs_new_protected:Npn \@@_test_in_corner_v:
6345 {
6346 \int_compare:nNnTF { \l_tmpb_tl } = { \c@jCol + 1 }
6347 {
6348 \@@_if_in_corner:nT { \l_tmpa_tl - \int_eval:n { \l_tmpb_tl - 1 } }
6349 { \bool_set_false:N \g_tmpa_bool }
6350 }
6351 {
6352 \@@_if_in_corner:nT { \l_tmpa_tl - \l_tmpb_tl }
6353 {
6354 \int_compare:nNnTF { \l_tmpb_tl } = { \c_one_int }
6355 { \bool_set_false:N \g_tmpa_bool }
6356 {
6357 \@@_if_in_corner:nT
6358 { \l_tmpa_tl - \int_eval:n { \l_tmpb_tl - 1 } }
6359 { \bool_set_false:N \g_tmpa_bool }
6360 }
6361 }
6362 }
6363 }

6364 \cs_new_protected:Npn \@@_vline_ii:
6365 {
6366 \tl_clear:N \l_@@_tikz_rule_tl
6367 \keys_set:no { nicematrix / RulesBis } \l_@@_other_keys_tl
6368 \bool_if:NTF \l_@@_dotted_bool
6369 { \@@_vline_iv: }
6370 {
6371 \tl_if_empty:NTF \l_@@_tikz_rule_tl
6372 { \@@_vline_iii: }
6373 { \@@_vline_v: }
6374 }
6375 }

First the case of a standard rule: the user has not used the key dotted nor the key tikz.
6376 \cs_new_protected:Npn \@@_vline_iii:
6377 {
6378 \pgfpicture
6379 \pgfrememberpicturepositiononpagetrue
6380 \pgf@relevantforpicturesizefalse
6381 \@@_qpoint:n { row - \int_use:N \l_@@_local_start_int }
6382 \dim_set_eq:NN \l_tmpa_dim \pgf@y
6383 \@@_qpoint:n { col - \int_use:N \l_@@_position_int }
6384 \dim_set:Nn \l_tmpb_dim
6385 {
6386 \pgf@x
6387 - 0.5 \l_@@_rule_width_dim
6388 +
6389 (\arrayrulewidth * \l_@@_multiplicity_int
6390 + \doublerulesep * (\l_@@_multiplicity_int - 1)) / 2
6391 }
6392 \@@_qpoint:n { row - \int_eval:n { \l_@@_local_end_int + 1 } }
6393 \dim_set_eq:NN \l_@@_tmpc_dim \pgf@y
6394 \bool_lazy_all:nT
6395 {
6396 { \int_compare_p:nNn { \l_@@_multiplicity_int } > { \c_one_int } }
6397 { \cs_if_exist_p:N \CT@drsc@ }
6398 { ! \tl_if_blank_p:o \CT@drsc@ }
6399 }
6400 {
6401 \group_begin:
6402 \CT@drsc@

153

6403 \dim_add:Nn \l_tmpa_dim { 0.5 \arrayrulewidth }
6404 \dim_sub:Nn \l_@@_tmpc_dim { 0.5 \arrayrulewidth }
6405 \dim_set:Nn \l_@@_tmpd_dim
6406 {
6407 \l_tmpb_dim - (\doublerulesep + \arrayrulewidth)
6408 * (\l_@@_multiplicity_int - 1)
6409 }
6410 \pgfpathrectanglecorners
6411 { \pgfpoint \l_tmpb_dim \l_tmpa_dim }
6412 { \pgfpoint \l_@@_tmpd_dim \l_@@_tmpc_dim }
6413 \pgfusepath { fill }
6414 \group_end:
6415 }
6416 \pgfpathmoveto { \pgfpoint \l_tmpb_dim \l_tmpa_dim }
6417 \pgfpathlineto { \pgfpoint \l_tmpb_dim \l_@@_tmpc_dim }
6418 \prg_replicate:nn { \l_@@_multiplicity_int - 1 }
6419 {
6420 \dim_sub:Nn \l_tmpb_dim { \arrayrulewidth + \doublerulesep }
6421 \pgfpathmoveto { \pgfpoint \l_tmpb_dim \l_tmpa_dim }
6422 \pgfpathlineto { \pgfpoint \l_tmpb_dim \l_@@_tmpc_dim }
6423 }
6424 \CT@arc@
6425 \pgfsetlinewidth { 1.1 \arrayrulewidth }
6426 \pgfsetrectcap
6427 \pgfusepathqstroke
6428 \endpgfpicture
6429 }

The following code is for the case of a dotted rule (with our system of rounded dots).
6430 \cs_new_protected:Npn \@@_vline_iv:
6431 {
6432 \pgfpicture
6433 \pgfrememberpicturepositiononpagetrue
6434 \pgf@relevantforpicturesizefalse
6435 \@@_qpoint:n { col - \int_use:N \l_@@_position_int }
6436 \dim_set:Nn \l_@@_x_initial_dim { \pgf@x - 0.5 \l_@@_rule_width_dim }
6437 \dim_set_eq:NN \l_@@_x_final_dim \l_@@_x_initial_dim
6438 \@@_qpoint:n { row - \int_use:N \l_@@_local_start_int }
6439 \dim_set_eq:NN \l_@@_y_initial_dim \pgf@y
6440 \@@_qpoint:n { row - \int_eval:n { \l_@@_local_end_int + 1 } }
6441 \dim_set_eq:NN \l_@@_y_final_dim \pgf@y
6442 \CT@arc@
6443 \@@_draw_line:
6444 \endpgfpicture
6445 }

The following code is for the case when the user uses the key tikz.
6446 \cs_new_protected:Npn \@@_vline_v:
6447 {
6448 \begin { tikzpicture }

By default, the color defined by \arrayrulecolor or by rules/color will be used, but it’s still
possible to change the color by using the key color or, of course, the key color inside the key tikz
(that is to say the key color provided by pgf.

6449 \CT@arc@
6450 \tl_if_empty:NF \l_@@_rule_color_tl
6451 { \tl_put_right:Ne \l_@@_tikz_rule_tl { , color = \l_@@_rule_color_tl } }
6452 \pgfrememberpicturepositiononpagetrue
6453 \pgf@relevantforpicturesizefalse
6454 \@@_qpoint:n { row - \int_use:N \l_@@_local_start_int }
6455 \dim_set_eq:NN \l_tmpa_dim \pgf@y
6456 \@@_qpoint:n { col - \int_use:N \l_@@_position_int }
6457 \dim_set:Nn \l_tmpb_dim { \pgf@x - 0.5 \l_@@_rule_width_dim }

154

6458 \@@_qpoint:n { row - \int_eval:n { \l_@@_local_end_int + 1 } }
6459 \dim_set_eq:NN \l_@@_tmpc_dim \pgf@y
6460 \exp_args:No \tikzset \l_@@_tikz_rule_tl
6461 \use:e { \exp_not:N \draw [\l_@@_tikz_rule_tl] }
6462 (\l_tmpb_dim , \l_tmpa_dim) --
6463 (\l_tmpb_dim , \l_@@_tmpc_dim) ;
6464 \end { tikzpicture }
6465 }

The command \@@_draw_vlines: draws all the vertical rules excepted in the blocks, in the virtual
blocks (determined by a command such as \Cdots) and in the corners (if the key corners is used).

6466 \cs_new_protected:Npn \@@_draw_vlines:
6467 {
6468 \int_step_inline:nnn
6469 {
6470 \bool_lazy_or:nnTF { \g_@@_delims_bool } { \l_@@_except_borders_bool }
6471 { 2 }
6472 { 1 }
6473 }
6474 {
6475 \bool_lazy_or:nnTF { \g_@@_delims_bool } { \l_@@_except_borders_bool }
6476 { \c@jCol }
6477 { \int_eval:n { \c@jCol + 1 } }
6478 }
6479 {
6480 \str_if_eq:eeF { \l_@@_vlines_clist } { all }
6481 { \clist_if_in:NnT \l_@@_vlines_clist { ##1 } }
6482 { \@@_vline:n { position = ##1 , total-width = \arrayrulewidth } }
6483 }
6484 }

The horizontal rules

The following command will be executed in the internal \CodeAfter. The argument #1 is a list of
key=value pairs of the form {nicematrix/Rules}.

6485 \cs_new_protected:Npn \@@_hline:n #1
6486 {

The group is for the options.
6487 \group_begin:
6488 \int_set_eq:NN \l_@@_end_int \c@jCol
6489 \keys_set_known:nnN { nicematrix / Rules } { #1 } \l_@@_other_keys_tl
6490 \@@_hline_i:
6491 \group_end:
6492 }

6493 \cs_new_protected:Npn \@@_hline_i:
6494 {

\l_tmpa_tl is the number of row and \l_tmpb_tl the number of column. When we have found a
column corresponding to a rule to draw, we note its number in \l_@@_tmpc_tl.

6495 \tl_set:No \l_tmpa_tl { \int_use:N \l_@@_position_int }
6496 \int_step_variable:nnNn \l_@@_start_int \l_@@_end_int
6497 \l_tmpb_tl
6498 {

The boolean \g_tmpa_bool indicates whether the small horizontal rule will be drawn. If we find that
it is in a block (a real block, created by \Block or a virtual block corresponding to a dotted line,
created by \Cdots, \Vdots, etc.), we will set \g_tmpa_bool to false and the small horizontal rule
won’t be drawn.

6499 \bool_gset_true:N \g_tmpa_bool

155

We test whether we are in a block.
6500 \seq_map_inline:Nn \g_@@_pos_of_blocks_seq
6501 { \@@_test_hline_in_block:nnnnn ##1 }

6502 \seq_map_inline:Nn \g_@@_pos_of_xdots_seq
6503 { \@@_test_hline_in_block:nnnnn ##1 }
6504 \seq_map_inline:Nn \g_@@_pos_of_stroken_blocks_seq
6505 { \@@_test_hline_in_stroken_block:nnnn ##1 }
6506 \clist_if_empty:NF \l_@@_corners_clist { \@@_test_in_corner_h: }
6507 \bool_if:NTF \g_tmpa_bool
6508 {
6509 \int_if_zero:nT { \l_@@_local_start_int }

We keep in memory that we have a rule to draw. \l_@@_local_start_int will be the starting row
of the rule that we will have to draw.

6510 { \int_set:Nn \l_@@_local_start_int \l_tmpb_tl }
6511 }
6512 {
6513 \int_compare:nNnT { \l_@@_local_start_int } > { \c_zero_int }
6514 {
6515 \int_set:Nn \l_@@_local_end_int { \l_tmpb_tl - 1 }
6516 \@@_hline_ii:
6517 \int_zero:N \l_@@_local_start_int
6518 }
6519 }
6520 }
6521 \int_compare:nNnT { \l_@@_local_start_int } > { \c_zero_int }
6522 {
6523 \int_set_eq:NN \l_@@_local_end_int \l_@@_end_int
6524 \@@_hline_ii:
6525 }
6526 }

6527 \cs_new_protected:Npn \@@_test_in_corner_h:
6528 {
6529 \int_compare:nNnTF { \l_tmpa_tl } = { \c@iRow + 1 }
6530 {
6531 \@@_if_in_corner:nT { \int_eval:n { \l_tmpa_tl - 1 } - \l_tmpb_tl }
6532 { \bool_set_false:N \g_tmpa_bool }
6533 }
6534 {
6535 \@@_if_in_corner:nT { \l_tmpa_tl - \l_tmpb_tl }
6536 {
6537 \int_compare:nNnTF { \l_tmpa_tl } = { \c_one_int }
6538 { \bool_set_false:N \g_tmpa_bool }
6539 {
6540 \@@_if_in_corner:nT
6541 { \int_eval:n { \l_tmpa_tl - 1 } - \l_tmpb_tl }
6542 { \bool_set_false:N \g_tmpa_bool }
6543 }
6544 }
6545 }
6546 }

6547 \cs_new_protected:Npn \@@_hline_ii:
6548 {
6549 \tl_clear:N \l_@@_tikz_rule_tl
6550 \keys_set:no { nicematrix / RulesBis } \l_@@_other_keys_tl
6551 \bool_if:NTF \l_@@_dotted_bool
6552 { \@@_hline_iv: }
6553 {
6554 \tl_if_empty:NTF \l_@@_tikz_rule_tl

156

6555 { \@@_hline_iii: }
6556 { \@@_hline_v: }
6557 }
6558 }

First the case of a standard rule (without the keys dotted and tikz).
6559 \cs_new_protected:Npn \@@_hline_iii:
6560 {
6561 \pgfpicture
6562 \pgfrememberpicturepositiononpagetrue
6563 \pgf@relevantforpicturesizefalse
6564 \@@_qpoint:n { col - \int_use:N \l_@@_local_start_int }
6565 \dim_set_eq:NN \l_tmpa_dim \pgf@x
6566 \@@_qpoint:n { row - \int_use:N \l_@@_position_int }
6567 \dim_set:Nn \l_tmpb_dim
6568 {
6569 \pgf@y
6570 - 0.5 \l_@@_rule_width_dim
6571 +
6572 (\arrayrulewidth * \l_@@_multiplicity_int
6573 + \doublerulesep * (\l_@@_multiplicity_int - 1)) / 2
6574 }
6575 \@@_qpoint:n { col - \int_eval:n { \l_@@_local_end_int + 1 } }
6576 \dim_set_eq:NN \l_@@_tmpc_dim \pgf@x
6577 \bool_lazy_all:nT
6578 {
6579 { \int_compare_p:nNn { \l_@@_multiplicity_int } > { \c_one_int } }
6580 { \cs_if_exist_p:N \CT@drsc@ }
6581 { ! \tl_if_blank_p:o \CT@drsc@ }
6582 }
6583 {
6584 \group_begin:
6585 \CT@drsc@
6586 \dim_set:Nn \l_@@_tmpd_dim
6587 {
6588 \l_tmpb_dim - (\doublerulesep + \arrayrulewidth)
6589 * (\l_@@_multiplicity_int - 1)
6590 }
6591 \pgfpathrectanglecorners
6592 { \pgfpoint \l_tmpa_dim \l_tmpb_dim }
6593 { \pgfpoint \l_@@_tmpc_dim \l_@@_tmpd_dim }
6594 \pgfusepathqfill
6595 \group_end:
6596 }
6597 \pgfpathmoveto { \pgfpoint \l_tmpa_dim \l_tmpb_dim }
6598 \pgfpathlineto { \pgfpoint \l_@@_tmpc_dim \l_tmpb_dim }
6599 \prg_replicate:nn { \l_@@_multiplicity_int - 1 }
6600 {
6601 \dim_sub:Nn \l_tmpb_dim { \arrayrulewidth + \doublerulesep }
6602 \pgfpathmoveto { \pgfpoint \l_tmpa_dim \l_tmpb_dim }
6603 \pgfpathlineto { \pgfpoint \l_@@_tmpc_dim \l_tmpb_dim }
6604 }
6605 \CT@arc@
6606 \pgfsetlinewidth { 1.1 \arrayrulewidth }
6607 \pgfsetrectcap
6608 \pgfusepathqstroke
6609 \endpgfpicture
6610 }

The following code is for the case of a dotted rule (with our system of rounded dots). The aim is
that, by standard the dotted line fits between square brackets (\hline doesn’t).

157

\begin{bNiceMatrix}
1 & 2 & 3 & 4 \\
\hline
1 & 2 & 3 & 4 \\
\hdottedline
1 & 2 & 3 & 4
\end{bNiceMatrix}

1 2 3 4
1 2 3 4

1 2 3 4



But, if the user uses margin, the dotted line extends to have the same width as a \hline.
\begin{bNiceMatrix}[margin]
1 & 2 & 3 & 4 \\
\hline
1 & 2 & 3 & 4 \\
\hdottedline
1 & 2 & 3 & 4
\end{bNiceMatrix}

 1 2 3 4
1 2 3 4

1 2 3 4



6611 \cs_new_protected:Npn \@@_hline_iv:
6612 {
6613 \pgfpicture
6614 \pgfrememberpicturepositiononpagetrue
6615 \pgf@relevantforpicturesizefalse
6616 \@@_qpoint:n { row - \int_use:N \l_@@_position_int }
6617 \dim_set:Nn \l_@@_y_initial_dim { \pgf@y - 0.5 \l_@@_rule_width_dim }
6618 \dim_set_eq:NN \l_@@_y_final_dim \l_@@_y_initial_dim
6619 \@@_qpoint:n { col - \int_use:N \l_@@_local_start_int }
6620 \dim_set_eq:NN \l_@@_x_initial_dim \pgf@x
6621 \int_compare:nNnT { \l_@@_local_start_int } = { \c_one_int }
6622 {
6623 \dim_sub:Nn \l_@@_x_initial_dim \l_@@_left_margin_dim
6624 \bool_if:NF \g_@@_delims_bool
6625 { \dim_sub:Nn \l_@@_x_initial_dim \arraycolsep }

For reasons purely aesthetic, we do an adjustment in the case of a rounded bracket. The correction
by 0.5 \l_@@_xdots_inter_dim is ad hoc for a better result.

6626 \tl_if_eq:NnF \g_@@_left_delim_tl (
6627 { \dim_add:Nn \l_@@_x_initial_dim { 0.5 \l_@@_xdots_inter_dim } }
6628 }
6629 \@@_qpoint:n { col - \int_eval:n { \l_@@_local_end_int + 1 } }
6630 \dim_set_eq:NN \l_@@_x_final_dim \pgf@x
6631 \int_compare:nNnT { \l_@@_local_end_int } = { \c@jCol }
6632 {
6633 \dim_add:Nn \l_@@_x_final_dim \l_@@_right_margin_dim
6634 \bool_if:NF \g_@@_delims_bool
6635 { \dim_add:Nn \l_@@_x_final_dim \arraycolsep }
6636 \tl_if_eq:NnF \g_@@_right_delim_tl)
6637 { \dim_gsub:Nn \l_@@_x_final_dim { 0.5 \l_@@_xdots_inter_dim } }
6638 }
6639 \CT@arc@
6640 \@@_draw_line:
6641 \endpgfpicture
6642 }

The following code is for the case when the user uses the key tikz (in the definition of a customized
rule by using the key custom-line).

6643 \cs_new_protected:Npn \@@_hline_v:
6644 {
6645 \begin { tikzpicture }

By default, the color defined by \arrayrulecolor or by rules/color will be used, but it’s still
possible to change the color by using the key color or, of course, the key color inside the key tikz
(that is to say the key color provided by pgf.

6646 \CT@arc@
6647 \tl_if_empty:NF \l_@@_rule_color_tl

158

6648 { \tl_put_right:Ne \l_@@_tikz_rule_tl { , color = \l_@@_rule_color_tl } }
6649 \pgfrememberpicturepositiononpagetrue
6650 \pgf@relevantforpicturesizefalse
6651 \@@_qpoint:n { col - \int_use:N \l_@@_local_start_int }
6652 \dim_set_eq:NN \l_tmpa_dim \pgf@x
6653 \@@_qpoint:n { row - \int_use:N \l_@@_position_int }
6654 \dim_set:Nn \l_tmpb_dim { \pgf@y - 0.5 \l_@@_rule_width_dim }
6655 \@@_qpoint:n { col - \int_eval:n { \l_@@_local_end_int + 1 } }
6656 \dim_set_eq:NN \l_@@_tmpc_dim \pgf@x
6657 \exp_args:No \tikzset \l_@@_tikz_rule_tl
6658 \use:e { \exp_not:N \draw [\l_@@_tikz_rule_tl] }
6659 (\l_tmpa_dim , \l_tmpb_dim) --
6660 (\l_@@_tmpc_dim , \l_tmpb_dim) ;
6661 \end { tikzpicture }
6662 }

The command \@@_draw_hlines: draws all the horizontal rules excepted in the blocks (even the
virtual blocks determined by commands such as \Cdots and in the corners — if the key corners is
used).

6663 \cs_new_protected:Npn \@@_draw_hlines:
6664 {
6665 \int_step_inline:nnn
6666 { \bool_lazy_or:nnTF \g_@@_delims_bool \l_@@_except_borders_bool 2 1 }
6667 {
6668 \bool_lazy_or:nnTF { \g_@@_delims_bool } { \l_@@_except_borders_bool }
6669 { \c@iRow }
6670 { \int_eval:n { \c@iRow + 1 } }
6671 }
6672 {
6673 \str_if_eq:eeF { \l_@@_hlines_clist } { all }
6674 { \clist_if_in:NnT \l_@@_hlines_clist { ##1 } }
6675 { \@@_hline:n { position = ##1 , total-width = \arrayrulewidth } }
6676 }
6677 }

The command \@@_Hline: will be linked to \Hline in the environments of nicematrix.
6678 \cs_set:Npn \@@_Hline: { \noalign \bgroup \@@_Hline_i:n { 1 } }

The argument of the command \@@_Hline_i:n is the number of successive \Hline found.
6679 \cs_set:Npn \@@_Hline_i:n #1
6680 {
6681 \peek_remove_spaces:n
6682 {
6683 \peek_meaning:NTF \Hline
6684 { \@@_Hline_ii:nn { #1 + 1 } }
6685 { \@@_Hline_iii:n { #1 } }
6686 }
6687 }

6688 \cs_set:Npn \@@_Hline_ii:nn #1 #2 { \@@_Hline_i:n { #1 } }

6689 \cs_set:Npn \@@_Hline_iii:n #1
6690 { \@@_collect_options:n { \@@_Hline_iv:nn { #1 } } }

6691 \cs_set_protected:Npn \@@_Hline_iv:nn #1 #2
6692 {
6693 \@@_compute_rule_width:n { multiplicity = #1 , #2 }
6694 \skip_vertical:N \l_@@_rule_width_dim
6695 \tl_gput_right:Ne \g_@@_pre_code_after_tl
6696 {
6697 \@@_hline:n
6698 {
6699 multiplicity = #1 ,
6700 position = \int_eval:n { \c@iRow + 1 } ,

159

6701 total-width = \dim_use:N \l_@@_rule_width_dim ,
6702 #2
6703 }
6704 }
6705 \egroup
6706 }

Customized rules defined by the final user

The final user can define a customized rule by using the key custom-line in \NiceMatrixOptions.
That key takes in as value a list of key=value pairs.

The following command will create the customized rule (it is executed when the final user uses the
key custom-line, for example in \NiceMatrixOptions).

6707 \cs_new_protected:Npn \@@_custom_line:n #1
6708 {
6709 \str_clear_new:N \l_@@_command_str
6710 \str_clear_new:N \l_@@_ccommand_str
6711 \str_clear_new:N \l_@@_letter_str
6712 \tl_clear_new:N \l_@@_other_keys_tl
6713 \keys_set_known:nnN { nicematrix / custom-line } { #1 } \l_@@_other_keys_tl
6714 \str_if_eq:eeT \c_backslash_str { \str_head:N \l_@@_command_str }
6715 {
6716 \str_set:Ne \l_@@_command_str { \str_tail:N \l_@@_command_str }

We delete the last character which is a space.
6717 \str_set:Ne \l_@@_command_str
6718 { \str_range:Nnn \l_@@_command_str { 1 } { -2 } }
6719 }
6720 \str_if_eq:eeT \c_backslash_str { \str_head:N \l_@@_ccommand_str }
6721 {
6722 \str_set:Ne \l_@@_ccommand_str
6723 { \str_tail:N \l_@@_ccommand_str }
6724 \str_set:Ne \l_@@_ccommand_str
6725 { \str_range:Nnn \l_@@_ccommand_str { 1 } { -2 } }
6726 }

If the final user only wants to draw horizontal rules, he does not need to specify a letter (for the
vertical rules in the preamble of the array). On the other hand, if he only wants to draw vertical
rules, he does not need to define a command (which is the tool to draw horizontal rules in the array).
Of course, a definition of custom lines with no letter and no command would be point-less.

6727 \bool_lazy_all:nTF
6728 {
6729 { \str_if_empty_p:N \l_@@_letter_str }
6730 { \str_if_empty_p:N \l_@@_command_str }
6731 { \str_if_empty_p:N \l_@@_ccommand_str }
6732 }
6733 { \@@_error:n { No~letter~and~no~command } }
6734 { \@@_custom_line_i:o \l_@@_other_keys_tl }
6735 }

6736 \keys_define:nn { nicematrix / custom-line }
6737 {
6738 letter .str_set:N = \l_@@_letter_str ,
6739 letter .value_required:n = true ,
6740 command .str_set:N = \l_@@_command_str ,
6741 command .value_required:n = true ,
6742 ccommand .str_set:N = \l_@@_ccommand_str ,
6743 ccommand .value_required:n = true ,
6744 }

6745 \cs_new_protected:Npn \@@_custom_line_i:n #1
6746 {

160

The following flags will be raised when the keys tikz, dotted and color are used (in the custom-
line).

6747 \bool_set_false:N \l_@@_tikz_rule_bool
6748 \bool_set_false:N \l_@@_dotted_rule_bool
6749 \bool_set_false:N \l_@@_color_bool

6750 \keys_set:nn { nicematrix / custom-line-bis } { #1 }
6751 \bool_if:NT \l_@@_tikz_rule_bool
6752 {
6753 \IfPackageLoadedF { tikz }
6754 { \@@_error:n { tikz~in~custom-line~without~tikz } }
6755 \bool_if:NT \l_@@_color_bool
6756 { \@@_error:n { color~in~custom-line~with~tikz } }
6757 }
6758 \bool_if:NT \l_@@_dotted_rule_bool
6759 {
6760 \int_compare:nNnT { \l_@@_multiplicity_int } > { \c_one_int }
6761 { \@@_error:n { key~multiplicity~with~dotted } }
6762 }
6763 \str_if_empty:NF \l_@@_letter_str
6764 {
6765 \int_compare:nTF { \str_count:N \l_@@_letter_str != 1 }
6766 { \@@_error:n { Several~letters } }
6767 {
6768 \tl_if_in:NoTF
6769 \c_@@_forbidden_letters_str
6770 \l_@@_letter_str
6771 { \@@_error:ne { Forbidden~letter } \l_@@_letter_str }
6772 {

During the analysis of the preamble provided by the final user, our automaton, for the letter cor-
responding at the custom line, will directly use the following command that you define in the main
hash table of TeX.

6773 \cs_set_nopar:cpn { @@ _ \l_@@_letter_str : } ##1
6774 { \@@_v_custom_line:nn { #1 } }
6775 }
6776 }
6777 }
6778 \str_if_empty:NF \l_@@_command_str { \@@_h_custom_line:n { #1 } }
6779 \str_if_empty:NF \l_@@_ccommand_str { \@@_c_custom_line:n { #1 } }
6780 }
6781 \cs_generate_variant:Nn \@@_custom_line_i:n { o }

6782 \tl_const:Nn \c_@@_forbidden_letters_tl { lcrpmbVX|()[]!@<> }
6783 \str_const:Nn \c_@@_forbidden_letters_str { lcrpmbVX|()[]!@<> }

The previous command \@@_custom_line_i:n uses the following set of keys. However, the whole
definition of the customized lines (as provided by the final user as argument of custom-line) will
also be used further with other sets of keys (for instance {nicematrix/Rules}). That’s why the
following set of keys has some keys which are no-op.

6784 \keys_define:nn { nicematrix / custom-line-bis }
6785 {
6786 multiplicity .int_set:N = \l_@@_multiplicity_int ,
6787 multiplicity .initial:n = 1 ,
6788 multiplicity .value_required:n = true ,
6789 color .code:n = \bool_set_true:N \l_@@_color_bool ,
6790 color .value_required:n = true ,
6791 tikz .code:n = \bool_set_true:N \l_@@_tikz_rule_bool ,
6792 tikz .value_required:n = true ,
6793 dotted .code:n = \bool_set_true:N \l_@@_dotted_rule_bool ,
6794 dotted .value_forbidden:n = true ,
6795 total-width .code:n = { } ,
6796 total-width .value_required:n = true ,
6797 width .code:n = { } ,

161

6798 width .value_required:n = true ,
6799 sep-color .code:n = { } ,
6800 sep-color .value_required:n = true ,
6801 unknown .code:n =
6802 \@@_unknown_key:nn
6803 { nicematrix / custom-line-bis }
6804 { Unknown~key~for~custom-line }
6805 }

The following keys will indicate whether the keys dotted, tikz and color are used in the use of a
custom-line.

6806 \bool_new:N \l_@@_dotted_rule_bool
6807 \bool_new:N \l_@@_tikz_rule_bool
6808 \bool_new:N \l_@@_color_bool

The following keys are used to determine the total width of the line (including the spaces on both
sides of the line). The key width is deprecated and has been replaced by the key total-width.

6809 \keys_define:nn { nicematrix / custom-line-width }
6810 {
6811 multiplicity .int_set:N = \l_@@_multiplicity_int ,
6812 multiplicity .initial:n = 1 ,
6813 multiplicity .value_required:n = true ,
6814 tikz .code:n = \bool_set_true:N \l_@@_tikz_rule_bool ,
6815 total-width .code:n = \dim_set:Nn \l_@@_rule_width_dim { #1 }
6816 \bool_set_true:N \l_@@_total_width_bool ,
6817 total-width .value_required:n = true ,
6818 width .meta:n = { total-width = #1 } ,
6819 dotted .code:n = \bool_set_true:N \l_@@_dotted_rule_bool ,
6820 }

The following command will create the command that the final user will use in its array to draw an
horizontal rule (hence the ‘h‘ in the name) with the full width of the array. #1 is the whole set of
keys to pass to the command \@@_hline:n (which is in the internal \CodeAfter).

6821 \cs_new_protected:Npn \@@_h_custom_line:n #1
6822 {

We use \cs_set:cpn and not \cs_new:cpn because we want a local definition. Moreover, the com-
mand must not be protected since it begins with \noalign (which is in \Hline).

6823 \cs_set_nopar:cpn { nicematrix - \l_@@_command_str } { \Hline [#1] }
6824 \seq_put_left:No \l_@@_custom_line_commands_seq \l_@@_command_str
6825 }

The following command will create the command that the final user will use in its array to draw an
horizontal rule on only some of the columns of the array (hence the letter c as in \cline). #1 is the
whole set of keys to pass to the command \@@_hline:n (which is in the internal \CodeAfter).

6826 \cs_new_protected:Npn \@@_c_custom_line:n #1
6827 {

Here, we need an expandable command since it begins with an \noalign.
6828 \exp_args:Nc \NewExpandableDocumentCommand
6829 { nicematrix - \l_@@_ccommand_str }
6830 { O { } m }
6831 {
6832 \noalign
6833 {
6834 \@@_compute_rule_width:n { #1 , ##1 }
6835 \skip_vertical:n { \l_@@_rule_width_dim }
6836 \clist_map_inline:nn
6837 { ##2 }
6838 { \@@_c_custom_line_i:nn { #1 , ##1 } { ####1 } }

162

6839 }
6840 }
6841 \seq_put_left:No \l_@@_custom_line_commands_seq \l_@@_ccommand_str
6842 }

The first argument is the list of key-value pairs characteristic of the line. The second argument is the
specification of columns for the \cline with the syntax a-b.

6843 \cs_new_protected:Npn \@@_c_custom_line_i:nn #1 #2
6844 {
6845 \tl_if_in:nnTF { #2 } { - }
6846 { \@@_cut_on_hyphen:w #2 \q_stop }
6847 { \@@_cut_on_hyphen:w #2 - #2 \q_stop }
6848 \tl_gput_right:Ne \g_@@_pre_code_after_tl
6849 {
6850 \@@_hline:n
6851 {
6852 #1 ,
6853 start = \l_tmpa_tl ,
6854 end = \l_tmpb_tl ,
6855 position = \int_eval:n { \c@iRow + 1 } ,
6856 total-width = \dim_use:N \l_@@_rule_width_dim
6857 }
6858 }
6859 }

6860 \cs_new_protected:Npn \@@_compute_rule_width:n #1
6861 {
6862 \bool_set_false:N \l_@@_tikz_rule_bool
6863 \bool_set_false:N \l_@@_total_width_bool
6864 \bool_set_false:N \l_@@_dotted_rule_bool
6865 \keys_set_known:nn { nicematrix / custom-line-width } { #1 }
6866 \bool_if:NF \l_@@_total_width_bool
6867 {
6868 \bool_if:NTF \l_@@_dotted_rule_bool
6869 { \dim_set:Nn \l_@@_rule_width_dim { 2 \l_@@_xdots_radius_dim } }
6870 {
6871 \bool_if:NF \l_@@_tikz_rule_bool
6872 {
6873 \dim_set:Nn \l_@@_rule_width_dim
6874 {
6875 \arrayrulewidth * \l_@@_multiplicity_int
6876 + \doublerulesep * (\l_@@_multiplicity_int - 1)
6877 }
6878 }
6879 }
6880 }
6881 }

The following constructions aims to allow cumulative blocks of options between square brackets such
as in I[color=blue][tikz=dashed].

6882 \cs_new_protected:Npn \@@_v_custom_line:nn #1 #2
6883 {
6884 \str_if_eq:nnTF { #2 } { [}
6885 { \@@_v_custom_line_i:nw { #1 } [}
6886 { \@@_v_custom_line_ii:nn { #2 } { #1 } }
6887 }
6888 \cs_new_protected:Npn \@@_v_custom_line_i:nw #1 [#2]
6889 { \@@_v_custom_line:nn { #1 , #2 } }

6890 \cs_new_protected:Npn \@@_v_custom_line_ii:nn #1 #2
6891 {
6892 \@@_compute_rule_width:n { #2 }

In the following line, the \dim_use:N is mandatory since we do an expansion.
6893 \tl_gput_right:Ne \g_@@_array_preamble_tl

163

6894 { \exp_not:N ! { \skip_horizontal:n { \dim_use:N \l_@@_rule_width_dim } } }
6895 \tl_gput_right:Ne \g_@@_pre_code_after_tl
6896 {
6897 \@@_vline:n
6898 {
6899 #2 ,
6900 position = \int_eval:n { \c@jCol + 1 } ,
6901 total-width = \dim_use:N \l_@@_rule_width_dim
6902 }
6903 }
6904 \@@_rec_preamble:n #1
6905 }

6906 \@@_custom_line:n
6907 { letter = : , command = hdottedline , ccommand = cdottedline, dotted }

The key hvlines

The following command tests whether the current position in the array (given by \l_tmpa_tl for the
row and \l_tmpb_tl for the column) would provide an horizontal rule towards the right in the block
delimited by the four arguments #1, #2, #3 and #4. If this rule would be in the block (it must not be
drawn), the boolean \l_tmpa_bool is set to false.

6908 \cs_new_protected:Npn \@@_test_hline_in_block:nnnnn #1 #2 #3 #4 #5
6909 {
6910 \int_compare:nNnT { \l_tmpa_tl } > { #1 }
6911 {
6912 \int_compare:nNnT { \l_tmpa_tl } < { #3 + 1 }
6913 {
6914 \int_compare:nNnT { \l_tmpb_tl } > { #2 - 1 }
6915 {
6916 \int_compare:nNnT { \l_tmpb_tl } < { #4 + 1 }
6917 { \bool_gset_false:N \g_tmpa_bool }
6918 }
6919 }
6920 }
6921 }

The same for vertical rules.
6922 \cs_new_protected:Npn \@@_test_vline_in_block:nnnnn #1 #2 #3 #4 #5
6923 {
6924 \int_compare:nNnT { \l_tmpa_tl } > { #1 - 1 }
6925 {
6926 \int_compare:nNnT { \l_tmpa_tl } < { #3 + 1 }
6927 {
6928 \int_compare:nNnT { \l_tmpb_tl } > { #2 }
6929 {
6930 \int_compare:nNnT { \l_tmpb_tl } < { #4 + 1 }
6931 { \bool_gset_false:N \g_tmpa_bool }
6932 }
6933 }
6934 }
6935 }

6936 \cs_new_protected:Npn \@@_test_hline_in_stroken_block:nnnn #1 #2 #3 #4
6937 {
6938 \int_compare:nNnT { \l_tmpb_tl } > { #2 - 1 }
6939 {
6940 \int_compare:nNnT { \l_tmpb_tl } < { #4 + 1 }
6941 {
6942 \int_compare:nNnTF { \l_tmpa_tl } = { #1 }
6943 { \bool_gset_false:N \g_tmpa_bool }
6944 {
6945 \int_compare:nNnT { \l_tmpa_tl } = { #3 + 1 }
6946 { \bool_gset_false:N \g_tmpa_bool }
6947 }

164

6948 }
6949 }
6950 }

6951 \cs_new_protected:Npn \@@_test_vline_in_stroken_block:nnnn #1 #2 #3 #4
6952 {
6953 \int_compare:nNnT { \l_tmpa_tl } > { #1 - 1 }
6954 {
6955 \int_compare:nNnT { \l_tmpa_tl } < { #3 + 1 }
6956 {
6957 \int_compare:nNnTF { \l_tmpb_tl } = { #2 }
6958 { \bool_gset_false:N \g_tmpa_bool }
6959 {
6960 \int_compare:nNnT { \l_tmpb_tl } = { #4 + 1 }
6961 { \bool_gset_false:N \g_tmpa_bool }
6962 }
6963 }
6964 }
6965 }

23 The empty corners

When the key corners is raised, the rules are not drawn in the corners; they are not colored and
\TikzEveryCell does not apply. Of course, we have to compute the corners before we begin to draw
the rules.

6966 \cs_new_protected:Npn \@@_compute_corners:
6967 {
6968 \seq_map_inline:Nn \g_@@_pos_of_blocks_seq
6969 { \@@_mark_cells_of_block:nnnnn ##1 }

The list \l_@@_corners_cells_clist will be the list of all the empty cells (and not in a block)
considered in the corners of the array. We use a clist instead of a seq because we will frequently
search in that list (and searching in a clist is faster than searching in a seq).

6970 \clist_clear:N \l_@@_corners_cells_clist
6971 \clist_map_inline:Nn \l_@@_corners_clist
6972 {
6973 \str_case:nnF { ##1 }
6974 {
6975 { NW }
6976 { \@@_compute_a_corner:nnnnnn 1 1 1 1 \c@iRow \c@jCol }
6977 { NE }
6978 { \@@_compute_a_corner:nnnnnn 1 \c@jCol 1 { -1 } \c@iRow 1 }
6979 { SW }
6980 { \@@_compute_a_corner:nnnnnn \c@iRow 1 { -1 } 1 1 \c@jCol }
6981 { SE }
6982 { \@@_compute_a_corner:nnnnnn \c@iRow \c@jCol { -1 } { -1 } 1 1 }
6983 }
6984 { \@@_error:nn { bad~corner } { ##1 } }
6985 }

Even if the user has used the key corners the list of cells in the corners may be empty.
6986 \clist_if_empty:NF \l_@@_corners_cells_clist
6987 {

You write on the aux file the list of the cells which are in the (empty) corners because you need that
information in the \CodeBefore since the commands which colors the rows, columns and cells must
not color the cells in the corners.

6988 \tl_gput_right:Ne \g_@@_aux_tl
6989 {
6990 \clist_set:Nn \exp_not:N \l_@@_corners_cells_clist

165

6991 { \l_@@_corners_cells_clist }
6992 }
6993 }
6994 }

6995 \cs_new_protected:Npn \@@_mark_cells_of_block:nnnnn #1 #2 #3 #4 #5
6996 {
6997 \int_step_inline:nnn { #1 } { #3 }
6998 {
6999 \int_step_inline:nnn { #2 } { #4 }
7000 { \cs_set_nopar:cpn { @@ _ block _ ##1 - ####1 } { } }
7001 }
7002 }

7003 \prg_new_conditional:Npnn \@@_if_in_block:nn #1 #2 { p }
7004 {
7005 \cs_if_exist:cTF
7006 { @@ _ block _ \int_eval:n { #1 } - \int_eval:n { #2 } }
7007 { \prg_return_true: }
7008 { \prg_return_false: }
7009 }

“Computing a corner” is determining all the empty cells (which are not in a block) that belong to
that corner. These cells will be added to the sequence \l_@@_corners_cells_clist.

The six arguments of \@@_compute_a_corner:nnnnnn are as follow:

• #1 and #2 are the number of row and column of the cell which is actually in the corner;

• #3 and #4 are the steps in rows and the step in columns when moving from the corner;

• #5 is the number of the final row when scanning the rows from the corner;

• #6 is the number of the final column when scanning the columns from the corner.

7010 \cs_new_protected:Npn \@@_compute_a_corner:nnnnnn #1 #2 #3 #4 #5 #6
7011 {

For the explanations and the name of the variables, we consider that we are computing the left-upper
corner.
First, we try to determine which is the last empty cell (and not in a block: we won’t add that precision
any longer) in the column of number 1. The flag \l_tmpa_bool will be raised when a non-empty cell
is found.

7012 \bool_set_false:N \l_tmpa_bool
7013 \int_zero_new:N \l_@@_last_empty_row_int
7014 \int_set:Nn \l_@@_last_empty_row_int { #1 }
7015 \int_step_inline:nnnn { #1 } { #3 } { #5 }
7016 {
7017 \bool_lazy_or:nnTF
7018 {
7019 \cs_if_exist_p:c
7020 { pgf @ sh @ ns @ \@@_env: - ##1 - \int_eval:n { #2 } }
7021 }
7022 { \@@_if_in_block_p:nn { ##1 } { #2 } }
7023 { \bool_set_true:N \l_tmpa_bool }
7024 {
7025 \bool_if:NF \l_tmpa_bool
7026 { \int_set:Nn \l_@@_last_empty_row_int { ##1 } }
7027 }
7028 }

166

Now, you determine the last empty cell in the row of number 1.
7029 \bool_set_false:N \l_tmpa_bool
7030 \int_zero_new:N \l_@@_last_empty_column_int
7031 \int_set:Nn \l_@@_last_empty_column_int { #2 }
7032 \int_step_inline:nnnn { #2 } { #4 } { #6 }
7033 {
7034 \bool_lazy_or:nnTF
7035 {
7036 \cs_if_exist_p:c
7037 { pgf @ sh @ ns @ \@@_env: - \int_eval:n { #1 } - ##1 }
7038 }
7039 { \@@_if_in_block_p:nn { #1 } { ##1 } }
7040 { \bool_set_true:N \l_tmpa_bool }
7041 {
7042 \bool_if:NF \l_tmpa_bool
7043 { \int_set:Nn \l_@@_last_empty_column_int { ##1 } }
7044 }
7045 }

Now, we loop over the rows.
7046 \int_step_inline:nnnn { #1 } { #3 } { \l_@@_last_empty_row_int }
7047 {

We treat the row number ##1 with another loop.
7048 \bool_set_false:N \l_tmpa_bool
7049 \int_step_inline:nnnn { #2 } { #4 } { \l_@@_last_empty_column_int }
7050 {
7051 \bool_lazy_or:nnTF
7052 { \cs_if_exist_p:c { pgf @ sh @ ns @ \@@_env: - ##1 - ####1 } }
7053 { \@@_if_in_block_p:nn { ##1 } { ####1 } }
7054 { \bool_set_true:N \l_tmpa_bool }
7055 {
7056 \bool_if:NF \l_tmpa_bool
7057 {
7058 \int_set:Nn \l_@@_last_empty_column_int { ####1 }
7059 \clist_put_right:Nn
7060 \l_@@_corners_cells_clist
7061 { ##1 - ####1 }
7062 \cs_set_nopar:cpn { @@ _ corner _ ##1 - ####1 } { }
7063 }
7064 }
7065 }
7066 }
7067 }

Of course, instead of the following lines, we could have use \prg_new_conditional:Npnn.
7068 \cs_new:Npn \@@_if_in_corner:nT #1 { \cs_if_exist:cT { @@ _ corner _ #1 } }
7069 \cs_new:Npn \@@_if_in_corner:nF #1 { \cs_if_exist:cF { @@ _ corner _ #1 } }

Instead of the previous lines, we could have used \l_@@_corners_cells_clist but it’s less efficient:
\clist_if_in:NeT \l_@@_corners_cells_clist { #1 } ...

24 The environment {NiceMatrixBlock}

The following flag will be raised when all the columns of the environments of the block must have
the same width in “auto” mode.

7070 \bool_new:N \l_@@_block_auto_columns_width_bool

167

Up to now, there is only one option available for the environment {NiceMatrixBlock}.
7071 \keys_define:nn { nicematrix / NiceMatrixBlock }
7072 {
7073 auto-columns-width .code:n =
7074 {
7075 \bool_set_true:N \l_@@_block_auto_columns_width_bool
7076 \dim_gzero_new:N \g_@@_max_cell_width_dim
7077 \bool_set_true:N \l_@@_auto_columns_width_bool
7078 }
7079 }

7080 \NewDocumentEnvironment { NiceMatrixBlock } { ! O { } }
7081 {
7082 \int_gincr:N \g_@@_NiceMatrixBlock_int
7083 \dim_zero:N \l_@@_columns_width_dim
7084 \keys_set:nn { nicematrix / NiceMatrixBlock } { #1 }
7085 \bool_if:NT \l_@@_block_auto_columns_width_bool
7086 {
7087 \cs_if_exist:cT
7088 { @@_max_cell_width_ \int_use:N \g_@@_NiceMatrixBlock_int }
7089 {
7090 \dim_set:Nn \l_@@_columns_width_dim
7091 {
7092 \use:c
7093 { @@_max_cell_width _ \int_use:N \g_@@_NiceMatrixBlock_int }
7094 }
7095 }
7096 }
7097 }

At the end of the environment {NiceMatrixBlock}, we write in the main aux file instructions for
the column width of all the environments of the block (that’s why we have stored the number of the
first environment of the block in the counter \l_@@_first_env_block_int).

7098 {
7099 \legacy_if:nTF { measuring@ }

If {NiceMatrixBlock} is used in an environment of amsmath such as {align}: cf. question 694957
on TeX StackExchange. The most important line in that case is the following one.

7100 { \int_gdecr:N \g_@@_NiceMatrixBlock_int }
7101 {
7102 \bool_if:NT \l_@@_block_auto_columns_width_bool
7103 {
7104 \iow_shipout:Nn \@mainaux \ExplSyntaxOn
7105 \iow_shipout:Ne \@mainaux
7106 {
7107 \cs_gset:cpn
7108 { @@ _ max _ cell _ width _ \int_use:N \g_@@_NiceMatrixBlock_int }

For technical reasons, we have to include the width of a potential rule on the right side of the cells.
7109 { \dim_eval:n { \g_@@_max_cell_width_dim + \arrayrulewidth } }
7110 }
7111 \iow_shipout:Nn \@mainaux \ExplSyntaxOff
7112 }
7113 }
7114 \ignorespacesafterend
7115 }

168

25 The extra nodes

The following command is called in \@@_use_arraybox_with_notes_c: just before the construction
of the blocks (if the creation of medium nodes is required, medium nodes are also created for the
blocks and that construction uses the standard medium nodes).

7116 \cs_new_protected:Npn \@@_create_extra_nodes:
7117 {
7118 \bool_if:nTF \l_@@_medium_nodes_bool
7119 {
7120 \bool_if:NTF \l_@@_no_cell_nodes_bool
7121 { \@@_error:n { extra-nodes~with~no-cell-nodes } }
7122 {
7123 \bool_if:NTF \l_@@_large_nodes_bool
7124 \@@_create_medium_and_large_nodes:
7125 \@@_create_medium_nodes:
7126 }
7127 }
7128 {
7129 \bool_if:NT \l_@@_large_nodes_bool
7130 {
7131 \bool_if:NTF \l_@@_no_cell_nodes_bool
7132 { \@@_error:n { extra-nodes~with~no-cell-nodes } }
7133 \@@_create_large_nodes:
7134 }
7135 }
7136 }

We have three macros of creation of nodes: \@@_create_medium_nodes:, \@@_create_large_nodes:
and \@@_create_medium_and_large_nodes:.

We have to compute the mathematical coordinates of the “medium nodes”. These mathematical
coordinates are also used to compute the mathematical coordinates of the “large nodes”. That’s why
we write a command \@@_computations_for_medium_nodes: to do these computations.

The command \@@_computations_for_medium_nodes: must be used in a {pgfpicture}.
For each row i, we compute two dimensions l_@@_row_i_min_dim and l_@@_row_i_max_dim. The
dimension l_@@_row_i_min_dim is the minimal y-value of all the cells of the row i. The dimension
l_@@_row_i_max_dim is the maximal y-value of all the cells of the row i.
Similarly, for each column j, we compute two dimensions l_@@_column_j_min_dim and l_@@_-
column_j_max_dim. The dimension l_@@_column_j_min_dim is the minimal x-value of all the cells
of the column j. The dimension l_@@_column_j_max_dim is the maximal x-value of all the cells of
the column j.
Since these dimensions will be computed as maximum or minimum, we initialize them to \c_max_dim
or -\c_max_dim.

7137 \cs_new_protected:Npn \@@_computations_for_medium_nodes:
7138 {
7139 \int_step_variable:nnNn \l_@@_first_row_int \g_@@_row_total_int \@@_i:
7140 {
7141 \dim_zero_new:c { l_@@_row_ \@@_i: _min_dim }
7142 \dim_set_eq:cN { l_@@_row_ \@@_i: _min_dim } \c_max_dim
7143 \dim_zero_new:c { l_@@_row_ \@@_i: _max_dim }
7144 \dim_set:cn { l_@@_row_ \@@_i: _max_dim } { - \c_max_dim }
7145 }
7146 \int_step_variable:nnNn \l_@@_first_col_int \g_@@_col_total_int \@@_j:
7147 {
7148 \dim_zero_new:c { l_@@_column_ \@@_j: _min_dim }
7149 \dim_set_eq:cN { l_@@_column_ \@@_j: _min_dim } \c_max_dim
7150 \dim_zero_new:c { l_@@_column_ \@@_j: _max_dim }
7151 \dim_set:cn { l_@@_column_ \@@_j: _max_dim } { - \c_max_dim }
7152 }

169

We begin the two nested loops over the rows and the columns of the array.
7153 \int_step_variable:nnNn \l_@@_first_row_int \g_@@_row_total_int \@@_i:
7154 {
7155 \int_step_variable:nnNn
7156 \l_@@_first_col_int \g_@@_col_total_int \@@_j:

If the cell (i-j) is empty or an implicit cell (that is to say a cell after implicit ampersands &) we don’t
update the dimensions we want to compute.

7157 {
7158 \cs_if_exist:cT
7159 { pgf @ sh @ ns @ \@@_env: - \@@_i: - \@@_j: }

We retrieve the coordinates of the anchor south west of the (normal) node of the cell (i-j). They
will be stored in \pgf@x and \pgf@y.

7160 {
7161 \pgfpointanchor { \@@_env: - \@@_i: - \@@_j: } { south~west }
7162 \dim_set:cn { l_@@_row_ \@@_i: _min_dim }
7163 { \dim_min:vn { l_@@_row _ \@@_i: _min_dim } \pgf@y }
7164 \seq_if_in:NeF \g_@@_multicolumn_cells_seq { \@@_i: - \@@_j: }
7165 {
7166 \dim_set:cn { l_@@_column _ \@@_j: _min_dim }
7167 { \dim_min:vn { l_@@_column _ \@@_j: _min_dim } \pgf@x }
7168 }

We retrieve the coordinates of the anchor north east of the (normal) node of the cell (i-j). They
will be stored in \pgf@x and \pgf@y.

7169 \pgfpointanchor { \@@_env: - \@@_i: - \@@_j: } { north~east }
7170 \dim_set:cn { l_@@_row _ \@@_i: _ max_dim }
7171 { \dim_max:vn { l_@@_row _ \@@_i: _ max_dim } { \pgf@y } }
7172 \seq_if_in:NeF \g_@@_multicolumn_cells_seq { \@@_i: - \@@_j: }
7173 {
7174 \dim_set:cn { l_@@_column _ \@@_j: _ max_dim }
7175 { \dim_max:vn { l_@@_column _ \@@_j: _max_dim } { \pgf@x } }
7176 }
7177 }
7178 }
7179 }

Now, we have to deal with empty rows or empty columns since we don’t have created nodes in such
rows and columns.

7180 \int_step_variable:nnNn \l_@@_first_row_int \g_@@_row_total_int \@@_i:
7181 {
7182 \dim_compare:nNnT
7183 { \dim_use:c { l_@@_row _ \@@_i: _ min _ dim } } = \c_max_dim
7184 {
7185 \@@_qpoint:n { row - \@@_i: - base }
7186 \dim_set:cn { l_@@_row _ \@@_i: _ max _ dim } \pgf@y
7187 \dim_set:cn { l_@@_row _ \@@_i: _ min _ dim } \pgf@y
7188 }
7189 }
7190 \int_step_variable:nnNn \l_@@_first_col_int \g_@@_col_total_int \@@_j:
7191 {
7192 \dim_compare:nNnT
7193 { \dim_use:c { l_@@_column _ \@@_j: _ min _ dim } } = \c_max_dim
7194 {
7195 \@@_qpoint:n { col - \@@_j: }
7196 \dim_set:cn { l_@@_column _ \@@_j: _ max _ dim } \pgf@y
7197 \dim_set:cn { l_@@_column _ \@@_j: _ min _ dim } \pgf@y
7198 }
7199 }
7200 }

Here is the command \@@_create_medium_nodes:. When this command is used, the “medium nodes”
are created.

170

7201 \cs_new_protected:Npn \@@_create_medium_nodes:
7202 {
7203 \pgfpicture
7204 \pgfrememberpicturepositiononpagetrue
7205 \pgf@relevantforpicturesizefalse
7206 \@@_computations_for_medium_nodes:

Now, we can create the “medium nodes”. We use a command \@@_create_nodes: because this
command will also be used for the creation of the “large nodes”.

7207 \tl_set:Nn \l_@@_suffix_tl { -medium }
7208 \@@_create_nodes:
7209 \endpgfpicture
7210 }

The command \@@_create_large_nodes: must be used when we want to create only the “large
nodes” and not the medium ones15. However, the computation of the mathematical coordinates
of the “large nodes” needs the computation of the mathematical coordinates of the “medium
nodes”. Hence, we use first \@@_computations_for_medium_nodes: and then the command
\@@_computations_for_large_nodes:.

7211 \cs_new_protected:Npn \@@_create_large_nodes:
7212 {
7213 \pgfpicture
7214 \pgfrememberpicturepositiononpagetrue
7215 \pgf@relevantforpicturesizefalse
7216 \@@_computations_for_medium_nodes:
7217 \@@_computations_for_large_nodes:
7218 \tl_set:Nn \l_@@_suffix_tl { - large }
7219 \@@_create_nodes:
7220 \endpgfpicture
7221 }

7222 \cs_new_protected:Npn \@@_create_medium_and_large_nodes:
7223 {
7224 \pgfpicture
7225 \pgfrememberpicturepositiononpagetrue
7226 \pgf@relevantforpicturesizefalse
7227 \@@_computations_for_medium_nodes:

Now, we can create the “medium nodes”. We use a command \@@_create_nodes: because this
command will also be used for the creation of the “large nodes”.

7228 \tl_set:Nn \l_@@_suffix_tl { - medium }
7229 \@@_create_nodes:
7230 \@@_computations_for_large_nodes:
7231 \tl_set:Nn \l_@@_suffix_tl { - large }
7232 \@@_create_nodes:
7233 \endpgfpicture
7234 }

For “large nodes”, the exterior rows and columns don’t interfere. That’s why the loop over the
columns will start at 1 and stop at \c@jCol (and not \g_@@_col_total_int). Idem for the rows.

7235 \cs_new_protected:Npn \@@_computations_for_large_nodes:
7236 {
7237 \int_set_eq:NN \l_@@_first_row_int \c_one_int
7238 \int_set_eq:NN \l_@@_first_col_int \c_one_int

We have to change the values of all the dimensions l_@@_row_i_min_dim, l_@@_row_i_max_dim,
l_@@_column_j_min_dim and l_@@_column_j_max_dim.

7239 \int_step_variable:nNn { \c@iRow - 1 } \@@_i:
7240 {
7241 \dim_set:cn { l_@@_row _ \@@_i: _ min _ dim }

15If we want to create both, we have to use \@@_create_medium_and_large_nodes:

171

7242 {
7243 (
7244 \dim_use:c { l_@@_row _ \@@_i: _ min _ dim } +
7245 \dim_use:c { l_@@_row _ \int_eval:n { \@@_i: + 1 } _ max _ dim }
7246)
7247 / 2
7248 }
7249 \dim_set_eq:cc { l_@@_row _ \int_eval:n { \@@_i: + 1 } _ max _ dim }
7250 { l_@@_row_ \@@_i: _min_dim }
7251 }
7252 \int_step_variable:nNn { \c@jCol - 1 } \@@_j:
7253 {
7254 \dim_set:cn { l_@@_column _ \@@_j: _ max _ dim }
7255 {
7256 (
7257 \dim_use:c { l_@@_column _ \@@_j: _ max _ dim } +
7258 \dim_use:c
7259 { l_@@_column _ \int_eval:n { \@@_j: + 1 } _ min _ dim }
7260)
7261 / 2
7262 }
7263 \dim_set_eq:cc { l_@@_column _ \int_eval:n { \@@_j: + 1 } _ min _ dim }
7264 { l_@@_column _ \@@_j: _ max _ dim }
7265 }

Here, we have to use \dim_sub:cn because of the number 1 in the name.
7266 \dim_sub:cn
7267 { l_@@_column _ 1 _ min _ dim }
7268 \l_@@_left_margin_dim
7269 \dim_add:cn
7270 { l_@@_column _ \int_use:N \c@jCol _ max _ dim }
7271 \l_@@_right_margin_dim
7272 }

The command \@@_create_nodes: is used twice: for the construction of the “medium nodes” and for
the construction of the “large nodes”. The nodes are constructed with the value of all the dimensions
l_@@_row_i_min_dim, l_@@_row_i_max_dim, l_@@_column_j_min_dim and l_@@_column_j_max_-
dim. Between the construction of the “medium nodes” and the “large nodes”, the values of these
dimensions are changed.
The function also uses \l_@@_suffix_tl (-medium or -large).

7273 \cs_new_protected:Npn \@@_create_nodes:
7274 {
7275 \int_step_variable:nnNn \l_@@_first_row_int \g_@@_row_total_int \@@_i:
7276 {
7277 \int_step_variable:nnNn \l_@@_first_col_int \g_@@_col_total_int \@@_j:
7278 {

We draw the rectangular node for the cell (\@@_i-\@@_j).
7279 \@@_pgf_rect_node:nnnnn
7280 { \@@_env: - \@@_i: - \@@_j: \l_@@_suffix_tl }
7281 { \dim_use:c { l_@@_column_ \@@_j: _min_dim } }
7282 { \dim_use:c { l_@@_row_ \@@_i: _min_dim } }
7283 { \dim_use:c { l_@@_column_ \@@_j: _max_dim } }
7284 { \dim_use:c { l_@@_row_ \@@_i: _max_dim } }
7285 \str_if_empty:NF \l_@@_name_str
7286 {
7287 \pgfnodealias
7288 { \l_@@_name_str - \@@_i: - \@@_j: \l_@@_suffix_tl }
7289 { \@@_env: - \@@_i: - \@@_j: \l_@@_suffix_tl }
7290 }
7291 }
7292 }
7293 \int_step_inline:nn { \c@iRow }

172

7294 {
7295 \pgfnodealias
7296 { \@@_env: - ##1 - last \l_@@_suffix_tl }
7297 { \@@_env: - ##1 - \int_use:N \c@jCol \l_@@_suffix_tl }
7298 }
7299 \int_step_inline:nn { \c@jCol }
7300 {
7301 \pgfnodealias
7302 { \@@_env: - last - ##1 \l_@@_suffix_tl }
7303 { \@@_env: - \int_use:N \c@iRow - ##1 \l_@@_suffix_tl }
7304 }
7305 \pgfnodealias % added 2025-04-05
7306 { \@@_env: - last - last \l_@@_suffix_tl }
7307 { \@@_env: - \int_use:N \c@iRow - \int_use:N \c@jCol \l_@@_suffix_tl }

Now, we create the nodes for the cells of the \multicolumn. We recall that we have stored in
\g_@@_multicolumn_cells_seq the list of the cells where a \multicolumn{n}{...}{...} with n>1
was issued and in \g_@@_multicolumn_sizes_seq the correspondent values of n.

7308 \seq_map_pairwise_function:NNN
7309 \g_@@_multicolumn_cells_seq
7310 \g_@@_multicolumn_sizes_seq
7311 \@@_node_for_multicolumn:nn
7312 }

7313 \cs_new_protected:Npn \@@_extract_coords_values: #1 - #2 \q_stop
7314 {
7315 \cs_set_nopar:Npn \@@_i: { #1 }
7316 \cs_set_nopar:Npn \@@_j: { #2 }
7317 }

The command \@@_node_for_multicolumn:nn takes two arguments. The first is the position of the
cell where the command \multicolumn{n}{...}{...} was issued in the format i-j and the second
is the value of n (the length of the “multi-cell”).

7318 \cs_new_protected:Npn \@@_node_for_multicolumn:nn #1 #2
7319 {
7320 \@@_extract_coords_values: #1 \q_stop
7321 \@@_pgf_rect_node:nnnnn
7322 { \@@_env: - \@@_i: - \@@_j: \l_@@_suffix_tl }
7323 { \dim_use:c { l_@@_column _ \@@_j: _ min _ dim } }
7324 { \dim_use:c { l_@@_row _ \@@_i: _ min _ dim } }
7325 { \dim_use:c { l_@@_column _ \int_eval:n { \@@_j: +#2-1 } _ max _ dim } }
7326 { \dim_use:c { l_@@_row _ \@@_i: _ max _ dim } }
7327 \str_if_empty:NF \l_@@_name_str
7328 {
7329 \pgfnodealias
7330 { \l_@@_name_str - \@@_i: - \@@_j: \l_@@_suffix_tl }
7331 { \int_use:N \g_@@_env_int - \@@_i: - \@@_j: \l_@@_suffix_tl }
7332 }
7333 }

26 The blocks

The following code deals with the command \Block. This command has no direct link with the
environment {NiceMatrixBlock}.

The options of the command \Block will be analyzed first in the cell of the array (and once again
when the block will be put in the array). Here is the set of keys for the first pass (in the cell of the
array).

173

7334 \keys_define:nn { nicematrix / Block / FirstPass }
7335 {
7336 j .code:n = \str_set:Nn \l_@@_hpos_block_str j
7337 \bool_set_true:N \l_@@_p_block_bool ,
7338 j .value_forbidden:n = true ,
7339 l .code:n = \str_set:Nn \l_@@_hpos_block_str l ,
7340 l .value_forbidden:n = true ,
7341 r .code:n = \str_set:Nn \l_@@_hpos_block_str r ,
7342 r .value_forbidden:n = true ,
7343 c .code:n = \str_set:Nn \l_@@_hpos_block_str c ,
7344 c .value_forbidden:n = true ,
7345 L .code:n = \str_set:Nn \l_@@_hpos_block_str l ,
7346 L .value_forbidden:n = true ,
7347 R .code:n = \str_set:Nn \l_@@_hpos_block_str r ,
7348 R .value_forbidden:n = true ,
7349 C .code:n = \str_set:Nn \l_@@_hpos_block_str c ,
7350 C .value_forbidden:n = true ,
7351 t .code:n = \str_set:Nn \l_@@_vpos_block_str t ,
7352 t .value_forbidden:n = true ,
7353 T .code:n = \str_set:Nn \l_@@_vpos_block_str T ,
7354 T .value_forbidden:n = true ,
7355 b .code:n = \str_set:Nn \l_@@_vpos_block_str b ,
7356 b .value_forbidden:n = true ,
7357 B .code:n = \str_set:Nn \l_@@_vpos_block_str B ,
7358 B .value_forbidden:n = true ,
7359 m .code:n = \str_set:Nn \l_@@_vpos_block_str c ,
7360 m .value_forbidden:n = true ,
7361 v-center .meta:n = m ,
7362 p .code:n = \bool_set_true:N \l_@@_p_block_bool ,
7363 p .value_forbidden:n = true ,
7364 color .code:n =
7365 \@@_color:n { #1 }
7366 \tl_set_rescan:Nnn
7367 \l_@@_draw_tl
7368 { \char_set_catcode_other:N ! }
7369 { #1 } ,
7370 color .value_required:n = true ,
7371 respect-arraystretch .code:n =
7372 \cs_set_eq:NN \@@_reset_arraystretch: \prg_do_nothing: ,
7373 respect-arraystretch .value_forbidden:n = true ,
7374 }

The following command \@@_Block: will be linked to \Block in the environments of nicematrix. We
define it with \NewExpandableDocumentCommand because it has an optional argument between <
and >. It’s mandatory to use an expandable command.

7375 \cs_new_protected:Npn \@@_Block: { \@@_collect_options:n { \@@_Block_i: } }

7376 \NewExpandableDocumentCommand \@@_Block_i: { m m D < > { } +m }
7377 {

If the first mandatory argument of the command (which is the size of the block with the syntax i-j)
has not been provided by the user, you use 1-1 (that is to say a block of only one cell).

7378 \tl_if_blank:nTF { #2 }
7379 { \@@_Block_ii:nnnnn \c_one_int \c_one_int }
7380 {
7381 \tl_if_in:nnTF { #2 } { - }
7382 {
7383 \int_compare:nNnTF { \char_value_catcode:n { 45 } } = { 13 }
7384 \@@_Block_i_czech:w \@@_Block_i:w
7385 #2 \q_stop
7386 }
7387 {
7388 \@@_error:nn { Bad~argument~for~Block } { #2 }

174

7389 \@@_Block_ii:nnnnn \c_one_int \c_one_int
7390 }
7391 }
7392 { #1 } { #3 } { #4 }
7393 \ignorespaces
7394 }

With the following construction, we extract the values of i and j in the first mandatory argument of
the command.

7395 \cs_new:Npn \@@_Block_i:w #1-#2 \q_stop { \@@_Block_ii:nnnnn { #1 } { #2 } }

With babel with the key czech, the character - (hyphen) is active. That’s why we need a special
version. Remark that we could not use a preprocessor in the command \@@_Block: to do the job
because the command \@@_Block: is defined with the command \NewExpandableDocumentCommand.

7396 {
7397 \char_set_catcode_active:N -
7398 \cs_new:Npn \@@_Block_i_czech:w #1-#2 \q_stop { \@@_Block_ii:nnnnn { #1 } { #2 } }
7399 }

Now, the arguments have been extracted: #1 is i (the number of rows of the block), #2 is j (the
number of columns of the block), #3 is the list of key=values pairs, #4 are the tokens to put before
the math mode and before the composition of the block and #5 is the label (=content) of the block.

7400 \cs_new_protected:Npn \@@_Block_ii:nnnnn #1 #2 #3 #4 #5
7401 {

We recall that #1 and #2 have been extracted from the first mandatory argument of \Block (which
is of the syntax i-j). However, the user is allowed to omit i or j (or both). We detect that situation
by replacing a missing value by 100 (it’s a convention: when the block will actually be drawn these
values will be detected and interpreted as maximal possible value according to the actual size of the
array).

7402 \bool_lazy_or:nnTF
7403 { \tl_if_blank_p:n { #1 } }
7404 { \str_if_eq_p:ee { * } { #1 } }
7405 { \int_set:Nn \l_tmpa_int { 100 } }
7406 { \int_set:Nn \l_tmpa_int { #1 } }
7407 \bool_lazy_or:nnTF
7408 { \tl_if_blank_p:n { #2 } }
7409 { \str_if_eq_p:ee { * } { #2 } }
7410 { \int_set:Nn \l_tmpb_int { 100 } }
7411 { \int_set:Nn \l_tmpb_int { #2 } }

If the block is mono-column.
7412 \int_compare:nNnTF { \l_tmpb_int } = { \c_one_int }
7413 {
7414 \tl_if_empty:NTF \l_@@_hpos_cell_tl
7415 { \str_set_eq:NN \l_@@_hpos_block_str \c_@@_c_str }
7416 { \str_set:No \l_@@_hpos_block_str \l_@@_hpos_cell_tl }
7417 }
7418 { \str_set_eq:NN \l_@@_hpos_block_str \c_@@_c_str }

The value of \l_@@_hpos_block_str may be modified by the keys of the command \Block that we
will analyze now.

7419 \keys_set_known:nn { nicematrix / Block / FirstPass } { #3 }

7420 \tl_set:Ne \l_tmpa_tl
7421 {
7422 { \int_use:N \c@iRow }
7423 { \int_use:N \c@jCol }
7424 { \int_eval:n { \c@iRow + \l_tmpa_int - 1 } }
7425 { \int_eval:n { \c@jCol + \l_tmpb_int - 1 } }
7426 }

175

Now, \l_tmpa_tl contains an “object” corresponding to the position of the block with four compo-
nents, each of them surrounded by curly brackets:
{imin}{jmin}{imax}{jmax}.

We have different treatments when the key p is used and when the block is mono-column or
mono-row, etc. That’s why we have several macros: \@@_Block_iv:nnnnn, \@@_Block_v:nnnnn,
\@@_Block_vi:nnnn, etc. (the five arguments of those macros are provided by curryfication).

7427 \bool_set_false:N \l_tmpa_bool
7428 \bool_if:NT \l_@@_amp_in_blocks_bool

\tl_if_in:nnT is slightly faster than \str_if_in:nnT.
7429 { \tl_if_in:nnT { #5 } { & } { \bool_set_true:N \l_tmpa_bool } }
7430 \bool_case:nF
7431 {
7432 \l_tmpa_bool { \@@_Block_vii:eennn }
7433 \l_@@_p_block_bool { \@@_Block_vi:eennn }

For the blocks mono-column, we will compose right away in a box in order to compute its width and
take that width into account for the width of the column. However, if the column is a X column, we
should not do that since the width is determined by another way. This should be the same for the
p, m and b columns and we should modify that point. However, for the X column, it’s imperative.
Otherwise, the process for the determination of the widths of the columns will be wrong.

7434 \l_@@_X_bool { \@@_Block_v:eennn }
7435 { \tl_if_empty_p:n { #5 } } { \@@_Block_v:eennn }
7436 { \int_compare_p:nNn \l_tmpa_int = \c_one_int } { \@@_Block_iv:eennn }
7437 { \int_compare_p:nNn \l_tmpb_int = \c_one_int } { \@@_Block_iv:eennn }
7438 }
7439 { \@@_Block_v:eennn }
7440 { \l_tmpa_int } { \l_tmpb_int } { #3 } { #4 } { #5 }
7441 }

The following macro is for the case of a \Block which is mono-row or mono-column (or both) and
don’t use the key p. In that case, the content of the block is composed right away in a box (because we
have to take into account the dimensions of that box for the width of the current column or the height
and the depth of the current row). However, that box will be put in the array after the construction
of the array (by using pgf) with \@@_draw_blocks: and above all \@@_Block_v:nnnnnn which will
do the main job.
#1 is i (the number of rows of the block), #2 is j (the number of columns of the block), #3 is the
list of key=values pairs, #4 are the tokens to put before the potential math mode and before the
composition of the block and #5 is the label (=content) of the block.

7442 \cs_new_protected:Npn \@@_Block_iv:nnnnn #1 #2 #3 #4 #5
7443 {
7444 \int_gincr:N \g_@@_block_box_int
7445 \cs_set_eq:NN \cellcolor \@@_cellcolor_error
7446 \cs_set_eq:NN \rowcolor \@@_rowcolor_error
7447 \cs_set_protected_nopar:Npn \diagbox ##1 ##2
7448 {
7449 \tl_gput_right:Ne \g_@@_pre_code_after_tl
7450 {
7451 \@@_actually_diagbox:nnnnnn
7452 { \int_use:N \c@iRow }
7453 { \int_use:N \c@jCol }
7454 { \int_eval:n { \c@iRow + #1 - 1 } }
7455 { \int_eval:n { \c@jCol + #2 - 1 } }
7456 { \g_@@_row_style_tl \exp_not:n { ##1 } }
7457 { \g_@@_row_style_tl \exp_not:n { ##2 } }
7458 }
7459 }
7460 \box_gclear_new:c
7461 { g_@@_ block _ box _ \int_use:N \g_@@_block_box_int _ box }

176

Now, we will actually compose the content of the \Block in a TeX box. Be careful: if after the
construction of the box, the boolean \g_@@_rotate_bool is raised (which means that the command
\rotate was present in the content of the \Block) we will rotate the box but also, maybe, change
the position of the baseline!

7462 \hbox_gset:cn
7463 { g_@@_ block _ box _ \int_use:N \g_@@_block_box_int _ box }
7464 {

For a mono-column block, if the user has specified a color for the column in the preamble of the
array, we want to fix that color in the box we construct. We do that with \set@color and not
\color_ensure_current: (in order to use \color_ensure_current: safely, you should load l3back-
end before the \documentclass).

7465 \tl_if_empty:NTF \l_@@_color_tl
7466 { \int_compare:nNnT { #2 } = { \c_one_int } { \set@color } }
7467 { \@@_color:o \l_@@_color_tl }

If the block is mono-row, we use \g_@@_row_style_tl even if it has yet been used in the beginning of
the cell where the command \Block has been issued because we want to be able to take into account
a potential instruction of color of the font in \g_@@_row_style_tl.

7468 \int_compare:nNnT { #1 } = { \c_one_int }
7469 {
7470 \int_if_zero:nTF { \c@iRow }
7471 {

In the following code, the value of code-for-first-row contains a \Block (in order to have the “first
row” centered). But, that block will be executed, since it is entirely contained in the first row, the
value of code-for-first-row will be inserted once again... with the same command \Block. That’s
why we have to nullify the command \Block.

$\begin{bNiceMatrix}%
[
r,
first-row,
last-col,
code-for-first-row = \Block{}{\scriptstyle\color{blue} \arabic{jCol}},
code-for-last-col = \scriptstyle \color{blue} \arabic{iRow}

]
& & & & \\

-2 & 3 & -4 & 5 & \\
3 & -4 & 5 & -6 & \\
-4 & 5 & -6 & 7 & \\
5 & -6 & 7 & -8 & \\

\end{bNiceMatrix}$

7472 \cs_set_eq:NN \Block \@@_NullBlock:
7473 \l_@@_code_for_first_row_tl
7474 }
7475 {
7476 \int_compare:nNnT { \c@iRow } = { \l_@@_last_row_int }
7477 {
7478 \cs_set_eq:NN \Block \@@_NullBlock:
7479 \l_@@_code_for_last_row_tl
7480 }
7481 }
7482 \g_@@_row_style_tl
7483 }

The following command will be no-op when respect-arraystretch is in force.
7484 \@@_reset_arraystretch:
7485 \dim_zero:N \extrarowheight

#4 is the optional argument of the command \Block, provided with the syntax <...>.
7486 #4

177

We adjust \l_@@_hpos_block_str when \rotate has been used (in the cell where the command
\Block is used but maybe in #4, \RowStyle, code-for-first-row, etc.).

7487 \@@_adjust_hpos_rotate:

The boolean \g_@@_rotate_bool will be also considered after the composition of the box (in order
to rotate the box).

Remind that we are in the command of composition of the box of the block. Previously, we have
only done some tuning. Now, we will actually compose the content with a {tabular}, an {array}
or a {minipage}.

7488 \bool_if:NTF \l_@@_tabular_bool
7489 {
7490 \bool_lazy_all:nTF
7491 {
7492 { \int_compare_p:nNn { #2 } = { \c_one_int } }

Remind that, when the column has not a fixed width, the dimension \l_@@_col_width_dim has the
conventional value of −1 cm.

7493 {
7494 ! \dim_compare_p:nNn
7495 { \l_@@_col_width_dim } < { \c_zero_dim }
7496 }
7497 { ! \g_@@_rotate_bool }
7498 }

When the block is mono-column in a column with a fixed width (e.g. p{3cm}), we use a {minipage}.
7499 {
7500 \use:e
7501 {

Curiously, \exp_not:N is still mandatory when tagging=on.
7502 \exp_not:N \begin { minipage }
7503 [\str_lowercase:f \l_@@_vpos_block_str]
7504 { \l_@@_col_width_dim }
7505 \str_case:on \l_@@_hpos_block_str
7506 { c \centering r \raggedleft l \raggedright }
7507 }
7508 #5
7509 \end { minipage }
7510 }

In the other cases, we use a {tabular}.
7511 {
7512 \use:e
7513 {

Curiously, \exp_not:N is still mandatory when tagging=on.
7514 \exp_not:N \begin { tabular }
7515 [\str_lowercase:f \l_@@_vpos_block_str]
7516 { @ { } \l_@@_hpos_block_str @ { } }
7517 }
7518 #5
7519 \end { tabular }
7520 }
7521 }

If we are in a mathematical array (\l_@@_tabular_bool is false). The composition is always done
with an {array} (never with a {minipage}).

7522 {
7523 $ % $
7524 \use:e
7525 {

178

Curiously, \exp_not:N is still mandatory when tagging=on.
7526 \exp_not:N \begin { array }
7527 [\str_lowercase:f \l_@@_vpos_block_str]
7528 { @ { } \l_@@_hpos_block_str @ { } }
7529 }
7530 #5
7531 \end { array }
7532 $ % $
7533 }
7534 }

The box which will contain the content of the block has now been composed.

If there were \rotate (which raises \g_@@_rotate_bool) in the content of the \Block, we do a
rotation of the box (and we also adjust the baseline of the rotated box).

7535 \bool_if:NT \g_@@_rotate_bool { \@@_rotate_box_of_block: }

If we are in a mono-column block, we take into account the width of that block for the width of the
column.

7536 \int_compare:nNnT { #2 } = { \c_one_int }
7537 {
7538 \dim_gset:Nn \g_@@_blocks_wd_dim
7539 {
7540 \dim_max:nn
7541 { \g_@@_blocks_wd_dim }
7542 {
7543 \box_wd:c
7544 { g_@@_ block _ box _ \int_use:N \g_@@_block_box_int _ box }
7545 }
7546 }
7547 }

If we are in a mono-row block we take into account the height and the depth of that block for
the height and the depth of the row, excepted when the block uses explicitely an option of vertical
position T or B. Remind that if the user has not used a key for the vertical position of the block, then
\l_@@_vpos_block_str remains empty.

7548 \int_compare:nNnT { #1 } = { \c_one_int }
7549 {
7550 \bool_lazy_any:nT
7551 {
7552 { \str_if_empty_p:N \l_@@_vpos_block_str }
7553 { \str_if_eq_p:ee { \l_@@_vpos_block_str } { t } }
7554 { \str_if_eq_p:ee { \l_@@_vpos_block_str } { b } }
7555 }
7556 { \@@_adjust_blocks_ht_dp: }
7557 }
7558 \seq_gput_right:Ne \g_@@_blocks_seq
7559 {
7560 \l_tmpa_tl

In the list of options #3, maybe there is a key for the horizontal alignment (l, r or c). In that
case, that key has been read and stored in \l_@@_hpos_block_str. However, maybe there were
no key of the horizontal alignment and that’s why we put a key corresponding to the value of
\l_@@_hpos_block_str, which is fixed by the type of current column.

7561 {
7562 \exp_not:n { #3 } ,
7563 \l_@@_hpos_block_str ,

Now, we put a key for the vertical alignment.
7564 \bool_if:NT \g_@@_rotate_bool
7565 {
7566 \bool_if:NTF \g_@@_rotate_c_bool
7567 { m }
7568 {

179

7569 \int_compare:nNnT { \c@iRow } = { \l_@@_last_row_int }
7570 { T }
7571 }
7572 }
7573 }
7574 {
7575 \box_use_drop:c
7576 { g_@@_ block _ box _ \int_use:N \g_@@_block_box_int _ box }
7577 }
7578 }
7579 \bool_set_false:N \g_@@_rotate_c_bool
7580 }

7581 \cs_new_protected:Npn \@@_adjust_blocks_ht_dp:
7582 {
7583 \dim_gset:Nn \g_@@_blocks_ht_dim
7584 {
7585 \dim_max:nn
7586 { \g_@@_blocks_ht_dim }
7587 {
7588 \box_ht:c
7589 { g_@@_ block _ box _ \int_use:N \g_@@_block_box_int _ box }
7590 }
7591 }
7592 \dim_gset:Nn \g_@@_blocks_dp_dim
7593 {
7594 \dim_max:nn
7595 { \g_@@_blocks_dp_dim }
7596 {
7597 \box_dp:c
7598 { g_@@_ block _ box _ \int_use:N \g_@@_block_box_int _ box }
7599 }
7600 }
7601 }

7602 \cs_new:Npn \@@_adjust_hpos_rotate:
7603 {
7604 \bool_if:NT \g_@@_rotate_bool
7605 {
7606 \str_set:Ne \l_@@_hpos_block_str
7607 {
7608 \bool_if:NTF \g_@@_rotate_c_bool
7609 { c }
7610 {
7611 \str_case:onF \l_@@_vpos_block_str
7612 { b l B l t r T r }
7613 {
7614 \int_compare:nNnTF { \c@iRow } = { \l_@@_last_row_int }
7615 { r }
7616 { l }
7617 }
7618 }
7619 }
7620 }
7621 }
7622 \cs_generate_variant:Nn \@@_Block_iv:nnnnn { e e }

Despite its name the following command rotates the box of the block but also does vertical adjustment
of the baseline of the block.

7623 \cs_new_protected:Npn \@@_rotate_box_of_block:
7624 {
7625 \box_grotate:cn

180

7626 { g_@@_ block _ box _ \int_use:N \g_@@_block_box_int _ box }
7627 { 90 }
7628 \int_compare:nNnT { \c@iRow } = { \l_@@_last_row_int }
7629 {
7630 \vbox_gset_top:cn
7631 { g_@@_ block _ box _ \int_use:N \g_@@_block_box_int _ box }
7632 {
7633 \skip_vertical:n { 0.8 ex }
7634 \box_use:c
7635 { g_@@_ block _ box _ \int_use:N \g_@@_block_box_int _ box }
7636 }
7637 }
7638 \bool_if:NT \g_@@_rotate_c_bool
7639 {
7640 \hbox_gset:cn
7641 { g_@@_ block _ box _ \int_use:N \g_@@_block_box_int _ box }
7642 {
7643 $ % $
7644 \vcenter
7645 {
7646 \box_use:c
7647 { g_@@_ block _ box _ \int_use:N \g_@@_block_box_int _ box }
7648 }
7649 $ % $
7650 }
7651 }
7652 }

The following macro is for the standard case, where the block is not mono-row and not mono-column
and does not use the key p). In that case, the content of the block is not composed right away in
a box. The composition in a box will be done further, just after the construction of the array (cf.
\@@_draw_blocks: and above all \@@_Block_v:nnnnnn).
#1 is i (the number of rows of the block), #2 is j (the number of columns of the block), #3 is the list
of key=values pairs, #4 are the tokens to put before the math mode and before the composition of
the block and #5 is the label (=content) of the block.

7653 \cs_new_protected:Npn \@@_Block_v:nnnnn #1 #2 #3 #4 #5
7654 {
7655 \seq_gput_right:Ne \g_@@_blocks_seq
7656 {
7657 \l_tmpa_tl
7658 { \exp_not:n { #3 } }
7659 {
7660 \bool_if:NTF \l_@@_tabular_bool
7661 {
7662 \group_begin:

The following command will be no-op when respect-arraystretch is in force.
7663 \@@_reset_arraystretch:
7664 \exp_not:n
7665 {
7666 \dim_zero:N \extrarowheight
7667 #4

If the box is rotated (the key \rotate may be in the previous #4), the tabular used for the content
of the cell will be constructed with a format c. In the other cases, the tabular will be constructed
with a format equal to the key of position of the box. In other words: the alignment internal to the
tabular is the same as the external alignment of the tabular (that is to say the position of the block
in its zone of merged cells).

7668 \tag_if_active:T { \tag_stop:n { table } }
7669 \use:e
7670 {
7671 \exp_not:N \begin { tabular } [\l_@@_vpos_block_str]
7672 { @ { } \l_@@_hpos_block_str @ { } }

181

7673 }
7674 #5
7675 \end { tabular }
7676 }
7677 \group_end:
7678 }

When we are not in an environment {NiceTabular} (or similar).
7679 {
7680 \group_begin:

The following will be no-op when respect-arraystretch is in force.
7681 \@@_reset_arraystretch:
7682 \exp_not:n
7683 {
7684 \dim_zero:N \extrarowheight
7685 #4
7686 $ % $
7687 \use:e
7688 {
7689 \exp_not:N \begin { array } [\l_@@_vpos_block_str]
7690 { @ { } \l_@@_hpos_block_str @ { } }
7691 }
7692 #5
7693 \end { array }
7694 $ % $
7695 }
7696 \group_end:
7697 }
7698 }
7699 }
7700 }
7701 \cs_generate_variant:Nn \@@_Block_v:nnnnn { e e }

The following macro is for the case of a \Block which uses the key p.
7702 \cs_new_protected:Npn \@@_Block_vi:nnnnn #1 #2 #3 #4 #5
7703 {
7704 \seq_gput_right:Ne \g_@@_blocks_seq
7705 {
7706 \l_tmpa_tl
7707 { \exp_not:n { #3 } }

Here, the curly braces for the group are mandatory.
7708 { { \exp_not:n { #4 #5 } } }
7709 }
7710 }
7711 \cs_generate_variant:Nn \@@_Block_vi:nnnnn { e e }

The following macro is also for the case of a \Block which uses the key p.
7712 \cs_new_protected:Npn \@@_Block_vii:nnnnn #1 #2 #3 #4 #5
7713 {
7714 \seq_gput_right:Ne \g_@@_blocks_seq
7715 {
7716 \l_tmpa_tl
7717 { \exp_not:n { #3 } }
7718 { \exp_not:n { #4 #5 } }
7719 }
7720 }
7721 \cs_generate_variant:Nn \@@_Block_vii:nnnnn { e e }

We recall that the options of the command \Block are analyzed twice: first in the cell of the array
and once again when the block will be put in the array after the construction of the array (by using
pgf).

182

7722 \keys_define:nn { nicematrix / Block / SecondPass }
7723 {
7724 ampersand-in-blocks .bool_set:N = \l_@@_amp_in_blocks_bool ,
7725 ampersand-in-blocks .default:n = true ,
7726 &-in-blocks .meta:n = ampersand-in-blocks ,

The sequence \l_@@_tikz_seq will contain a sequence of comma-separated lists of keys.
7727 tikz .code:n =
7728 \IfPackageLoadedTF { tikz }
7729 { \seq_put_right:Nn \l_@@_tikz_seq { { #1 } } }
7730 { \@@_error:n { tikz~key~without~tikz } } ,
7731 tikz .value_required:n = true ,
7732 fill .code:n =
7733 \tl_set_rescan:Nnn
7734 \l_@@_fill_tl
7735 { \char_set_catcode_other:N ! }
7736 { #1 } ,
7737 fill .value_required:n = true ,

In fine, the opacity will be applied by \pgfsetfillopacity.
7738 opacity .tl_set:N = \l_@@_opacity_tl ,
7739 opacity .value_required:n = true ,
7740 draw .code:n =
7741 \tl_set_rescan:Nnn
7742 \l_@@_draw_tl
7743 { \char_set_catcode_other:N ! }
7744 { #1 } ,
7745 draw .default:n = default ,
7746 rounded-corners .dim_set:N = \l_@@_rounded_corners_dim ,
7747 rounded-corners .default:n = 4 pt ,
7748 color .code:n =
7749 \@@_color:n { #1 }
7750 \tl_set_rescan:Nnn
7751 \l_@@_draw_tl
7752 { \char_set_catcode_other:N ! }
7753 { #1 } ,
7754 borders .clist_set:N = \l_@@_borders_clist ,
7755 borders .value_required:n = true ,
7756 hvlines .meta:n = { vlines , hlines } ,
7757 vlines .bool_set:N = \l_@@_vlines_block_bool,
7758 vlines .default:n = true ,
7759 hlines .bool_set:N = \l_@@_hlines_block_bool,
7760 hlines .default:n = true ,
7761 line-width .dim_set:N = \l_@@_line_width_dim ,
7762 line-width .value_required:n = true ,

Some keys have not a property .value_required:n (or similar) because they are in FirstPass.
7763 j .code:n = \str_set:Nn \l_@@_hpos_block_str j
7764 \bool_set_true:N \l_@@_p_block_bool ,
7765 l .code:n = \str_set:Nn \l_@@_hpos_block_str l ,
7766 r .code:n = \str_set:Nn \l_@@_hpos_block_str r ,
7767 c .code:n = \str_set:Nn \l_@@_hpos_block_str c ,
7768 L .code:n = \str_set:Nn \l_@@_hpos_block_str l
7769 \bool_set_true:N \l_@@_hpos_of_block_cap_bool ,
7770 R .code:n = \str_set:Nn \l_@@_hpos_block_str r
7771 \bool_set_true:N \l_@@_hpos_of_block_cap_bool ,
7772 C .code:n = \str_set:Nn \l_@@_hpos_block_str c
7773 \bool_set_true:N \l_@@_hpos_of_block_cap_bool ,
7774 t .code:n = \str_set:Nn \l_@@_vpos_block_str t ,
7775 T .code:n = \str_set:Nn \l_@@_vpos_block_str T ,
7776 b .code:n = \str_set:Nn \l_@@_vpos_block_str b ,
7777 B .code:n = \str_set:Nn \l_@@_vpos_block_str B ,
7778 m .code:n = \str_set:Nn \l_@@_vpos_block_str c ,
7779 m .value_forbidden:n = true ,
7780 v-center .meta:n = m ,

183

7781 p .code:n = \bool_set_true:N \l_@@_p_block_bool ,
7782 p .value_forbidden:n = true ,
7783 name .tl_set:N = \l_@@_block_name_str , % .str_set:N ?
7784 name .value_required:n = true ,
7785 name .initial:n = ,
7786 respect-arraystretch .code:n =
7787 \cs_set_eq:NN \@@_reset_arraystretch: \prg_do_nothing: ,
7788 respect-arraystretch .value_forbidden:n = true ,
7789 transparent .bool_set:N = \l_@@_transparent_bool ,
7790 transparent .default:n = true ,
7791 transparent .initial:n = false ,
7792 unknown .code:n =
7793 \@@_unknown_key:nn
7794 { nicematrix / Block / SecondPass }
7795 { Unknown~key~for~Block }
7796 }

The command \@@_draw_blocks: will draw all the blocks. This command is used after the construc-
tion of the array. We have to revert to a clean version of \ialign because there may be tabulars in
the \Block instructions that will be composed now.

7797 \cs_new_protected:Npn \@@_draw_blocks:
7798 {
7799 \bool_if:NTF \c_@@_revtex_bool
7800 { \cs_set_eq:NN \ialign \@@_old_ialign: }
7801 { \cs_set_eq:NN \ar@ialign \@@_old_ar@ialign: }
7802 \seq_map_inline:Nn \g_@@_blocks_seq { \@@_Block_iv:nnnnnn ##1 }
7803 }

7804 \cs_new_protected:Npn \@@_Block_iv:nnnnnn #1 #2 #3 #4 #5 #6
7805 {

The integer \l_@@_last_row_int will be the last row of the block and \l_@@_last_col_int its last
column.

7806 \int_zero:N \l_@@_last_row_int
7807 \int_zero:N \l_@@_last_col_int

We remind that the first mandatory argument of the command \Block is the size of the block with
the special format i-j. However, the user is allowed to omit i or j (or both). This will be interpreted
as follows: the last row (resp. column) of the block will be the last row (resp. column) of the block
(without the potential exterior row—resp. column—of the array). By convention, this is stored in
\g_@@_blocks_seq as a number of rows (resp. columns) for the block equal to 100. That’s what we
detect now (we write 98 for the case the the command \Block has been issued in the “first row”).

7808 \int_compare:nNnTF { #3 } > { 98 }
7809 { \int_set_eq:NN \l_@@_last_row_int \c@iRow }
7810 { \int_set:Nn \l_@@_last_row_int { #3 } }
7811 \int_compare:nNnTF { #4 } > { 98 }
7812 { \int_set_eq:NN \l_@@_last_col_int \c@jCol }
7813 { \int_set:Nn \l_@@_last_col_int { #4 } }

7814 \int_compare:nNnTF { \l_@@_last_col_int } > { \g_@@_col_total_int }
7815 {
7816 \bool_lazy_and:nnTF
7817 { \l_@@_preamble_bool }
7818 {
7819 \int_compare_p:n
7820 { \l_@@_last_col_int <= \g_@@_static_num_of_col_int }
7821 }
7822 {
7823 \msg_error:nnnn { nicematrix } { Block~too~large~2 } { #1 } { #2 }
7824 \@@_msg_redirect_name:nn { Block~too~large~2 } { none }
7825 \@@_msg_redirect_name:nn { columns~not~used } { none }
7826 }
7827 { \msg_error:nnnn { nicematrix } { Block~too~large~1 } { #1 } { #2 } }
7828 }

184

7829 {
7830 \int_compare:nNnTF { \l_@@_last_row_int } > { \g_@@_row_total_int }
7831 { \msg_error:nnnn { nicematrix } { Block~too~large~1 } { #1 } { #2 } }
7832 {
7833 \@@_Block_v:nneenn
7834 { #1 }
7835 { #2 }
7836 { \int_use:N \l_@@_last_row_int }
7837 { \int_use:N \l_@@_last_col_int }
7838 { #5 }
7839 { #6 }
7840 }
7841 }
7842 }

The following command \@@_Block_v:nnnnnn will actually draw the block. #1 is the first row of the
block; #2 is the first column of the block; #3 is the last row of the block; #4 is the last column of the
block; #5 is a list of key=value options; #6 is the label (content) of the block.

7843 \cs_new_protected:Npn \@@_Block_v:nnnnnn #1 #2 #3 #4 #5 #6
7844 {

The group is for the keys.
7845 \group_begin:
7846 \int_compare:nNnT { #1 } = { #3 }
7847 { \str_set:Nn \l_@@_vpos_block_str { t } }
7848 \keys_set:nn { nicematrix / Block / SecondPass } { #5 }

If the content of the block contains &, we will have a special treatment (since the cell must be divided
in several sub-cells). Remark that \tl_if_in:nnT is faster then \str_if_in:nnT.

7849 \tl_if_in:nnT { #6 } { & } { \bool_set_true:N \l_@@_ampersand_bool }

7850 \bool_lazy_and:nnT
7851 { \l_@@_vlines_block_bool }
7852 { ! \l_@@_ampersand_bool }
7853 {
7854 \tl_gput_right:Ne \g_nicematrix_code_after_tl
7855 {
7856 \@@_vlines_block:nnn
7857 { \exp_not:n { #5 } }
7858 { #1 - #2 }
7859 { \int_use:N \l_@@_last_row_int - \int_use:N \l_@@_last_col_int }
7860 }
7861 }
7862 \bool_if:NT \l_@@_hlines_block_bool
7863 {
7864 \tl_gput_right:Ne \g_nicematrix_code_after_tl
7865 {
7866 \@@_hlines_block:nnn
7867 { \exp_not:n { #5 } }
7868 { #1 - #2 }
7869 { \int_use:N \l_@@_last_row_int - \int_use:N \l_@@_last_col_int }
7870 }
7871 }
7872 \bool_if:NF \l_@@_transparent_bool
7873 {
7874 \bool_lazy_and:nnF { \l_@@_vlines_block_bool } { \l_@@_hlines_block_bool }
7875 {

The sequence of the positions of the blocks (excepted the blocks with the key hvlines) will be used
when drawing the rules (in fact, there is also the \multicolumn and the \diagbox in that sequence).

7876 \seq_gput_left:Ne \g_@@_pos_of_blocks_seq
7877 { { #1 } { #2 } { #3 } { #4 } { \l_@@_block_name_str } }
7878 }
7879 }

185

7880 \tl_if_empty:NF \l_@@_draw_tl
7881 {
7882 \bool_lazy_or:nnT \l_@@_hlines_block_bool \l_@@_vlines_block_bool
7883 { \@@_error:n { hlines~with~color } }
7884 \tl_gput_right:Ne \g_nicematrix_code_after_tl
7885 {
7886 \@@_stroke_block:nnn

#5 are the options
7887 { \exp_not:n { #5 } }
7888 { #1 - #2 }
7889 { \int_use:N \l_@@_last_row_int - \int_use:N \l_@@_last_col_int }
7890 }
7891 \seq_gput_right:Nn \g_@@_pos_of_stroken_blocks_seq
7892 { { #1 } { #2 } { #3 } { #4 } }
7893 }

7894 \clist_if_empty:NF \l_@@_borders_clist
7895 {
7896 \tl_gput_right:Ne \g_nicematrix_code_after_tl
7897 {
7898 \@@_stroke_borders_block:nnn
7899 { \exp_not:n { #5 } }
7900 { #1 - #2 }
7901 { \int_use:N \l_@@_last_row_int - \int_use:N \l_@@_last_col_int }
7902 }
7903 }

7904 \tl_if_empty:NF \l_@@_fill_tl
7905 {
7906 \@@_add_opacity_to_fill:
7907 \tl_gput_right:Ne \g_@@_pre_code_before_tl
7908 {
7909 \@@_exp_color_arg:No \@@_roundedrectanglecolor \l_@@_fill_tl
7910 { #1 - #2 }
7911 { \int_use:N \l_@@_last_row_int - \int_use:N \l_@@_last_col_int }
7912 { \dim_use:N \l_@@_rounded_corners_dim }
7913 }
7914 }

7915 \seq_if_empty:NF \l_@@_tikz_seq
7916 {
7917 \tl_gput_right:Ne \g_nicematrix_code_before_tl
7918 {
7919 \@@_block_tikz:nnnnn
7920 { \seq_use:Nn \l_@@_tikz_seq { , } }
7921 { #1 }
7922 { #2 }
7923 { \int_use:N \l_@@_last_row_int }
7924 { \int_use:N \l_@@_last_col_int }

We will have in that last field a list of lists of Tikz keys.
7925 }
7926 }

7927 \cs_set_protected_nopar:Npn \diagbox ##1 ##2
7928 {
7929 \tl_gput_right:Ne \g_@@_pre_code_after_tl
7930 {
7931 \@@_actually_diagbox:nnnnnn
7932 { #1 }
7933 { #2 }
7934 { \int_use:N \l_@@_last_row_int }
7935 { \int_use:N \l_@@_last_col_int }
7936 { \exp_not:n { ##1 } }
7937 { \exp_not:n { ##2 } }

186

7938 }
7939 }

Let’s consider the following {NiceTabular}. Because of the instruction !{\hspace{1cm}} in the
preamble which increases the space between the columns (by adding, in fact, that space to the
previous column, that is to say the second column of the tabular), we will create two nodes relative
to the block: the node 1-1-block and the node 1-1-block-short.

\begin{NiceTabular}{cc!{\hspace{1cm}}c}
\Block{2-2}{our block} & & one \\

& & two \\
three & four & five \\
six & seven & eight \\
\end{NiceTabular}

We highlight the node 1-1-block We highlight the node 1-1-block-short

one
two

three four five
six seven eight

our block one
two

three four five
six seven eight

our block

The construction of the node corresponding to the merged cells.
7940 \pgfpicture
7941 \pgfrememberpicturepositiononpagetrue
7942 \pgf@relevantforpicturesizefalse
7943 \@@_qpoint:n { row - #1 }
7944 \dim_set_eq:NN \l_tmpa_dim \pgf@y
7945 \@@_qpoint:n { col - #2 }
7946 \dim_set_eq:NN \l_tmpb_dim \pgf@x
7947 \@@_qpoint:n { row - \int_eval:n { \l_@@_last_row_int + 1 } }
7948 \dim_set_eq:NN \l_@@_tmpc_dim \pgf@y
7949 \@@_qpoint:n { col - \int_eval:n { \l_@@_last_col_int + 1 } }
7950 \dim_set_eq:NN \l_@@_tmpd_dim \pgf@x

We construct the node for the block with the name (#1-#2-block).
The function \@@_pgf_rect_node:nnnnn takes in as arguments the name of the node and the four
coordinates of two opposite corner points of the rectangle.

7951 \@@_pgf_rect_node:nnnnn
7952 { \@@_env: - #1 - #2 - block }
7953 \l_tmpb_dim \l_tmpa_dim \l_@@_tmpd_dim \l_@@_tmpc_dim
7954 \str_if_empty:NF \l_@@_block_name_str
7955 {
7956 \pgfnodealias
7957 { \@@_env: - \l_@@_block_name_str }
7958 { \@@_env: - #1 - #2 - block }
7959 \str_if_empty:NF \l_@@_name_str
7960 {
7961 \pgfnodealias
7962 { \l_@@_name_str - \l_@@_block_name_str }
7963 { \@@_env: - #1 - #2 - block }
7964 }
7965 }

Now, we create the “short node” which, in general, will be used to put the label (that is to say the
content of the node). However, if one the keys L, C or R is used (that information is provided by the
boolean \l_@@_hpos_of_block_cap_bool), we don’t need to create that node since the normal node
is used to put the label.

7966 \bool_if:NF \l_@@_hpos_of_block_cap_bool
7967 {
7968 \dim_set_eq:NN \l_tmpb_dim \c_max_dim

187

The short node is constructed by taking into account the contents of the columns involved in at least
one cell of the block. That’s why we have to do a loop over the rows of the array.

7969 \int_step_inline:nnn { \l_@@_first_row_int } { \g_@@_row_total_int }
7970 {

We recall that, when a cell is empty, no (normal) node is created in that cell. That’s why we test the
existence of the node before using it.

7971 \cs_if_exist:cT
7972 { pgf @ sh @ ns @ \@@_env: - ##1 - #2 }
7973 {
7974 \seq_if_in:NnF \g_@@_multicolumn_cells_seq { ##1 - #2 }
7975 {
7976 \pgfpointanchor { \@@_env: - ##1 - #2 } { west }
7977 \dim_set:Nn \l_tmpb_dim { \dim_min:nn \l_tmpb_dim \pgf@x }
7978 }
7979 }
7980 }

If all the cells of the column were empty, \l_tmpb_dim has still the same value \c_max_dim. In that
case, you use for \l_tmpb_dim the value of the position of the vertical rule.

7981 \dim_compare:nNnT { \l_tmpb_dim } = { \c_max_dim }
7982 {
7983 \@@_qpoint:n { col - #2 }
7984 \dim_set_eq:NN \l_tmpb_dim \pgf@x
7985 }
7986 \dim_set:Nn \l_@@_tmpd_dim { - \c_max_dim }
7987 \int_step_inline:nnn { \l_@@_first_row_int } { \g_@@_row_total_int }
7988 {
7989 \cs_if_exist:cT
7990 { pgf @ sh @ ns @ \@@_env: - ##1 - \int_use:N \l_@@_last_col_int }
7991 {
7992 \seq_if_in:NnF \g_@@_multicolumn_cells_seq { ##1 - #2 }
7993 {
7994 \pgfpointanchor
7995 { \@@_env: - ##1 - \int_use:N \l_@@_last_col_int }
7996 { east }
7997 \dim_set:Nn \l_@@_tmpd_dim
7998 { \dim_max:nn { \l_@@_tmpd_dim } { \pgf@x } }
7999 }
8000 }
8001 }
8002 \dim_compare:nNnT { \l_@@_tmpd_dim } = { - \c_max_dim }
8003 {
8004 \@@_qpoint:n { col - \int_eval:n { \l_@@_last_col_int + 1 } }
8005 \dim_set_eq:NN \l_@@_tmpd_dim \pgf@x
8006 }
8007 \@@_pgf_rect_node:nnnnn
8008 { \@@_env: - #1 - #2 - block - short }
8009 \l_tmpb_dim \l_tmpa_dim \l_@@_tmpd_dim \l_@@_tmpc_dim
8010 }

If the creation of the “medium nodes” is required, we create a “medium node” for the block. The
function \@@_pgf_rect_node:nnn takes in as arguments the name of the node and two pgf points.

8011 \bool_if:NT \l_@@_medium_nodes_bool
8012 {
8013 \@@_pgf_rect_node:nnn
8014 { \@@_env: - #1 - #2 - block - medium }
8015 { \pgfpointanchor { \@@_env: - #1 - #2 - medium } { north~west } }
8016 {
8017 \pgfpointanchor
8018 { \@@_env:
8019 - \int_use:N \l_@@_last_row_int
8020 - \int_use:N \l_@@_last_col_int - medium
8021 }

188

8022 { south~east }
8023 }
8024 }
8025 \endpgfpicture
8026

\l_@@_ampersand_bool is raised when the content of the block actually contents an ampersand &.
8027 \bool_if:NTF \l_@@_ampersand_bool
8028 {
8029 \seq_set_split:Nnn \l_tmpa_seq { & } { #6 }
8030 \int_zero_new:N \l_@@_split_int
8031 \int_set:Nn \l_@@_split_int { \seq_count:N \l_tmpa_seq }

The following counters will be used to send information to \cellcolor if the user uses that command
in a subcell.

8032 \int_zero_new:N \l_@@_first_row_int
8033 \int_zero_new:N \l_@@_first_col_int
8034 \int_zero_new:N \l_@@_last_row_int
8035 \int_zero_new:N \l_@@_last_col_int
8036 \int_set:Nn \l_@@_first_row_int { #1 }
8037 \int_set:Nn \l_@@_first_col_int { #2 }
8038 \int_set:Nn \l_@@_last_row_int { #3 }
8039 \int_set:Nn \l_@@_last_col_int { #4 }

8040 \pgfpicture
8041 \pgfrememberpicturepositiononpagetrue
8042 \pgf@relevantforpicturesizefalse
8043 \@@_qpoint:n { row - #1 }
8044 \dim_set_eq:NN \l_@@_tmpc_dim \pgf@y
8045 \@@_qpoint:n { row - \int_eval:n { #3 + 1 } }
8046 \dim_set_eq:NN \l_@@_tmpd_dim \pgf@y
8047 \@@_qpoint:n { col - #2 }
8048 \dim_set_eq:NN \l_tmpa_dim \pgf@x
8049 \@@_qpoint:n { col - \int_eval:n { #4 + 1 } }
8050 \dim_set:Nn \l_tmpb_dim
8051 { (\pgf@x - \l_tmpa_dim) / \int_use:N \l_@@_split_int }
8052 \bool_lazy_or:nnT
8053 { \l_@@_vlines_block_bool }
8054 { \str_if_eq_p:ee { \l_@@_vlines_clist } { all } }
8055 {
8056 \int_step_inline:nn { \l_@@_split_int - 1 }
8057 {
8058 \pgfpathmoveto
8059 {
8060 \pgfpoint
8061 { \l_tmpa_dim + ##1 \l_tmpb_dim }
8062 \l_@@_tmpc_dim
8063 }
8064 \pgfpathlineto
8065 {
8066 \pgfpoint
8067 { \l_tmpa_dim + ##1 \l_tmpb_dim }
8068 \l_@@_tmpd_dim
8069 }
8070 \CT@arc@
8071 \pgfsetlinewidth { 1.1 \arrayrulewidth }
8072 \pgfsetrectcap
8073 \pgfusepathqstroke
8074 }
8075 }
8076 \cs_set_eq:NN \cellcolor \@@_subcellcolor
8077 \int_zero_new:N \l_@@_split_i_int

8078 \str_if_eq:eeTF { \l_@@_vpos_block_str } { T }

189

8079 {
8080 \pgfpointanchor { \@@_env: - #1 - #2 - block } { north }
8081 \dim_set_eq:NN \l_@@_tmpc_dim \pgf@y
8082 }
8083 {
8084 \str_if_eq:eeTF { \l_@@_vpos_block_str } { B }
8085 {
8086 \pgfpointanchor { \@@_env: - #1 - #2 - block } { south }
8087 \dim_set_eq:NN \l_@@_tmpc_dim \pgf@y
8088 }
8089 {
8090 \bool_lazy_or:nnTF
8091 { \int_compare_p:nNn { #1 } = { #3 } }
8092 { \str_if_eq_p:ee { \l_@@_vpos_block_str } { t } }
8093 {
8094 \@@_qpoint:n { row - #1 - base }
8095 \dim_set:Nn \l_@@_tmpc_dim { \pgf@y - 0.5 \arrayrulewidth }
8096 }
8097 {
8098 \str_if_eq:eeTF { \l_@@_vpos_block_str } { b }
8099 {
8100 \@@_qpoint:n { row - #3 - base }
8101 \dim_set:Nn \l_@@_tmpc_dim { \pgf@y - 0.5 \arrayrulewidth }
8102 }
8103 {
8104 \@@_qpoint:n { #1 - #2 - block }
8105 \dim_set_eq:NN \l_@@_tmpc_dim \pgf@y
8106 }
8107 }
8108 }
8109 }
8110 \int_step_inline:nn { \l_@@_split_int }
8111 {
8112 \group_begin:

The counter \l_@@_split_i_int is only for the command \@@_subcellcolor.
8113 \int_set:Nn \l_@@_split_i_int { ##1 }
8114 \dim_set:Nn \col@sep
8115 { \bool_if:NTF \l_@@_tabular_bool { \tabcolsep } { \arraycolsep } }
8116 \pgftransformshift
8117 {
8118 \pgfpoint
8119 {
8120 \l_tmpa_dim + ##1 \l_tmpb_dim -
8121 \str_case:on \l_@@_hpos_block_str
8122 {
8123 l { \l_tmpb_dim + \col@sep}
8124 c { 0.5 \l_tmpb_dim }
8125 r { \col@sep }
8126 }
8127 }
8128 { \l_@@_tmpc_dim }
8129 }
8130 \pgfset { inner~sep = \c_zero_dim }
8131 \pgfnode
8132 { rectangle }
8133 {
8134 \str_if_eq:eeTF { \l_@@_vpos_block_str } { T }
8135 {
8136 \str_case:on \l_@@_hpos_block_str
8137 {
8138 l { north~west }
8139 c { north }
8140 r { north~east }

190

8141 }
8142 }
8143 {
8144 \str_if_eq:eeTF { \l_@@_vpos_block_str } { B }
8145 {
8146 \str_case:on \l_@@_hpos_block_str
8147 {
8148 l { south~west }
8149 c { south }
8150 r { south~east }
8151 }
8152 }
8153 {
8154 \bool_lazy_any:nTF
8155 {
8156 { \int_compare_p:nNn { #1 } = { #3 } }
8157 { \str_if_eq_p:ee { \l_@@_vpos_block_str } { t } }
8158 { \str_if_eq_p:ee { \l_@@_vpos_block_str } { b } }
8159 }
8160 {
8161 \str_case:on \l_@@_hpos_block_str
8162 {
8163 l { base~west }
8164 c { base }
8165 r { base~east }
8166 }
8167 }
8168 {
8169 \str_case:on \l_@@_hpos_block_str
8170 {
8171 l { west }
8172 c { center }
8173 r { east }
8174 }
8175 }
8176 }
8177 }
8178 }
8179 { \seq_item:Nn \l_tmpa_seq { ##1 } } { } { }
8180 \group_end:
8181 }
8182 \endpgfpicture
8183 }

Now the case where there is no ampersand & in the content of the block.
8184 {
8185 \bool_if:NTF \l_@@_p_block_bool
8186 {

When the final user has used the key p, we have to compute the width.
8187 \pgfpicture
8188 \pgfrememberpicturepositiononpagetrue
8189 \pgf@relevantforpicturesizefalse
8190 \bool_if:NTF \l_@@_hpos_of_block_cap_bool
8191 {
8192 \@@_qpoint:n { col - #2 }
8193 \dim_gset_eq:NN \g_tmpa_dim \pgf@x
8194 \@@_qpoint:n { col - \int_eval:n { \l_@@_last_col_int + 1 } }
8195 }
8196 {
8197 \pgfpointanchor { \@@_env: - #1 - #2 - block - short } { west }
8198 \dim_gset_eq:NN \g_tmpa_dim \pgf@x
8199 \pgfpointanchor { \@@_env: - #1 - #2 - block - short } { east }
8200 }

191

8201 \dim_gset:Nn \g_tmpb_dim { \pgf@x - \g_tmpa_dim }
8202 \endpgfpicture
8203 \hbox_set:Nn \l_@@_cell_box
8204 {
8205 \begin { minipage } [\str_lowercase:f \l_@@_vpos_block_str]
8206 { \g_tmpb_dim }
8207 \str_case:on \l_@@_hpos_block_str
8208 { c \centering r \raggedleft l \raggedright j { } }
8209 #6
8210 \end { minipage }
8211 }
8212 }
8213 { \hbox_set:Nn \l_@@_cell_box { \set@color #6 } }
8214 \bool_if:NT \g_@@_rotate_bool { \@@_rotate_cell_box: }

Now, we will put the label of the block. We recall that \l_@@_vpos_block_str is empty when the
user has not used a key for the vertical position of the block.

8215 \pgfpicture
8216 \pgfrememberpicturepositiononpagetrue
8217 \pgf@relevantforpicturesizefalse
8218 \bool_lazy_any:nTF
8219 {
8220 { \str_if_empty_p:N \l_@@_vpos_block_str }
8221 { \str_if_eq_p:ee { \l_@@_vpos_block_str } { c } }
8222 { \str_if_eq_p:ee { \l_@@_vpos_block_str } { T } }
8223 { \str_if_eq_p:ee { \l_@@_vpos_block_str } { B } }
8224 }

8225 {

If we are in the “first column”, we must put the block as if it was with the key r.
8226 \int_if_zero:nT { #2 } { \str_set_eq:NN \l_@@_hpos_block_str \c_@@_r_str }

If we are in the “last column”, we must put the block as if it was with the key l.
8227 \bool_if:nT \g_@@_last_col_found_bool
8228 {
8229 \int_compare:nNnT { #2 } = { \g_@@_col_total_int }
8230 { \str_set_eq:NN \l_@@_hpos_block_str \c_@@_l_str }
8231 }

\l_tmpa_tl will contain the anchor of the pgf node which will be used.
8232 \tl_set:Ne \l_tmpa_tl
8233 {
8234 \str_case:on \l_@@_vpos_block_str
8235 {

We recall that \l_@@_vpos_block_str is empty when the user has not used a key for the vertical
position of the block.

8236 { } {
8237 \str_case:on \l_@@_hpos_block_str
8238 {
8239 c { center }
8240 l { west }
8241 r { east }
8242 j { center }
8243 }
8244 }
8245 c {
8246 \str_case:on \l_@@_hpos_block_str
8247 {
8248 c { center }
8249 l { west }
8250 r { east }
8251 j { center }

192

8252 }
8253

8254 }
8255 T {
8256 \str_case:on \l_@@_hpos_block_str
8257 {
8258 c { north }
8259 l { north~west }
8260 r { north~east }
8261 j { north }
8262 }
8263

8264 }
8265 B {
8266 \str_case:on \l_@@_hpos_block_str
8267 {
8268 c { south }
8269 l { south~west }
8270 r { south~east }
8271 j { south }
8272 }
8273

8274 }
8275 }
8276 }

8277 \pgftransformshift
8278 {
8279 \pgfpointanchor
8280 {
8281 \@@_env: - #1 - #2 - block
8282 \bool_if:NF \l_@@_hpos_of_block_cap_bool { - short }
8283 }
8284 { \l_tmpa_tl }
8285 }
8286 \pgfset { inner~sep = \c_zero_dim }
8287 \pgfnode
8288 { rectangle }
8289 { \l_tmpa_tl }
8290 { \box_use_drop:N \l_@@_cell_box } { } { }
8291 }

End of the case when \l_@@_vpos_block_str is equal to c, T or B. Now, the other cases.
8292 {

8293 \pgfextracty \l_tmpa_dim
8294 {
8295 \@@_qpoint:n
8296 {
8297 row - \str_if_eq:eeTF { \l_@@_vpos_block_str } { b } { #3 } { #1 }
8298 - base
8299 }
8300 }
8301 \dim_sub:Nn \l_tmpa_dim { 0.5 \arrayrulewidth }

We retrieve (in \pgf@x) the x-value of the center of the block.
8302 \pgfpointanchor
8303 {
8304 \@@_env: - #1 - #2 - block
8305 \bool_if:NF \l_@@_hpos_of_block_cap_bool { - short }
8306 }
8307 {
8308 \str_case:on \l_@@_hpos_block_str
8309 {
8310 c { center }

193

8311 l { west }
8312 r { east }
8313 j { center }
8314 }
8315 }

We put the label of the block which has been composed in \l_@@_cell_box.
8316 \pgftransformshift { \pgfpoint \pgf@x \l_tmpa_dim }
8317 \pgfset { inner~sep = \c_zero_dim }
8318 \pgfnode
8319 { rectangle }
8320 {
8321 \str_case:on \l_@@_hpos_block_str
8322 {
8323 c { base }
8324 l { base~west }
8325 r { base~east }
8326 j { base }
8327 }
8328 }
8329 { \box_use_drop:N \l_@@_cell_box } { } { }
8330 }

8331 \endpgfpicture
8332 }
8333 \group_end:
8334 }
8335 \cs_generate_variant:Nn \@@_Block_v:nnnnnn { n n e e }

The following command adds the value of \l_@@_opacity_tl (if not empty) to the specification of
color set in \l_@@_fill_tl (the information of opacity is added in between square brackets before
the color itself).

8336 \cs_new_protected:Npn \@@_add_opacity_to_fill:
8337 {
8338 \tl_if_empty:NF \l_@@_opacity_tl
8339 {
8340 \tl_if_head_eq_meaning:oNTF \l_@@_fill_tl [
8341 {
8342 \tl_set:Ne \l_@@_fill_tl
8343 {
8344 [opacity = \l_@@_opacity_tl ,
8345 \tl_tail:o \l_@@_fill_tl
8346 }
8347 }
8348 {
8349 \tl_set:Ne \l_@@_fill_tl
8350 { [opacity = \l_@@_opacity_tl] { \exp_not:o \l_@@_fill_tl } }
8351 }
8352 }
8353 }

The first argument of \@@_stroke_block:nnn is a list of options for the rectangle that you will stroke.
The second argument is the upper-left cell of the block (with, as usual, the syntax i-j) and the third
is the last cell of the block (with the same syntax).

8354 \cs_new_protected:Npn \@@_stroke_block:nnn #1 #2 #3
8355 {
8356 \group_begin:
8357 \tl_clear:N \l_@@_draw_tl
8358 \dim_set_eq:NN \l_@@_line_width_dim \arrayrulewidth
8359 \keys_set_known:nn { nicematrix / BlockStroke } { #1 }
8360 \pgfpicture
8361 \pgfrememberpicturepositiononpagetrue
8362 \pgf@relevantforpicturesizefalse

194

8363 \tl_if_empty:NF \l_@@_draw_tl
8364 {

If the user has used the key color of the command \Block without value, the color fixed by
\arrayrulecolor is used.

8365 \tl_if_eq:NnTF \l_@@_draw_tl { default }
8366 { \CT@arc@ }
8367 { \@@_color:o \l_@@_draw_tl }
8368 }
8369 \pgfsetcornersarced
8370 {
8371 \pgfpoint
8372 { \l_@@_rounded_corners_dim }
8373 { \l_@@_rounded_corners_dim }
8374 }
8375 \@@_cut_on_hyphen:w #2 \q_stop
8376 \int_compare:nNnF { \l_tmpa_tl } > { \c@iRow }
8377 {
8378 \int_compare:nNnF { \l_tmpb_tl } > { \c@jCol }
8379 {
8380 \@@_qpoint:n { row - \l_tmpa_tl }
8381 \dim_set_eq:NN \l_tmpb_dim \pgf@y
8382 \@@_qpoint:n { col - \l_tmpb_tl }
8383 \dim_set_eq:NN \l_@@_tmpc_dim \pgf@x
8384 \@@_cut_on_hyphen:w #3 \q_stop
8385 \int_compare:nNnT { \l_tmpa_tl } > { \c@iRow }
8386 { \tl_set:No \l_tmpa_tl { \int_use:N \c@iRow } }
8387 \int_compare:nNnT { \l_tmpb_tl } > { \c@jCol }
8388 { \tl_set:No \l_tmpb_tl { \int_use:N \c@jCol } }
8389 \@@_qpoint:n { row - \int_eval:n { \l_tmpa_tl + 1 } }
8390 \dim_set_eq:NN \l_tmpa_dim \pgf@y
8391 \@@_qpoint:n { col - \int_eval:n { \l_tmpb_tl + 1 } }
8392 \dim_set_eq:NN \l_@@_tmpd_dim \pgf@x
8393 \pgfsetlinewidth { 1.1 \l_@@_line_width_dim }
8394 \pgfpathrectanglecorners
8395 { \pgfpoint \l_@@_tmpc_dim \l_tmpb_dim }
8396 { \pgfpoint \l_@@_tmpd_dim \l_tmpa_dim }
8397 \dim_compare:nNnTF { \l_@@_rounded_corners_dim } = { \c_zero_dim }
8398 { \pgfusepathqstroke }
8399 { \pgfusepath { stroke } }
8400 }
8401 }
8402 \endpgfpicture
8403 \group_end:
8404 }

Here is the set of keys for the command \@@_stroke_block:nnn.
8405 \keys_define:nn { nicematrix / BlockStroke }
8406 {
8407 color .tl_set:N = \l_@@_draw_tl ,
8408 draw .code:n =
8409 \tl_if_empty:eF { #1 } { \tl_set:Nn \l_@@_draw_tl { #1 } } ,
8410 draw .default:n = default ,
8411 line-width .dim_set:N = \l_@@_line_width_dim ,
8412 rounded-corners .dim_set:N = \l_@@_rounded_corners_dim ,
8413 rounded-corners .default:n = 4 pt
8414 }

The first argument of \@@_vlines_block:nnn is a list of options for the rules that we will draw. The
second argument is the upper-left cell of the block (with, as usual, the syntax i-j) and the third is
the last cell of the block (with the same syntax).

8415 \cs_new_protected:Npn \@@_vlines_block:nnn #1 #2 #3
8416 {

195

8417 \group_begin:
8418 \dim_set_eq:NN \l_@@_line_width_dim \arrayrulewidth
8419 \keys_set_known:nn { nicematrix / BlockBorders } { #1 }
8420 \dim_set_eq:NN \arrayrulewidth \l_@@_line_width_dim
8421 \@@_cut_on_hyphen:w #2 \q_stop
8422 \tl_set_eq:NN \l_@@_tmpc_tl \l_tmpa_tl
8423 \tl_set_eq:NN \l_@@_tmpd_tl \l_tmpb_tl
8424 \@@_cut_on_hyphen:w #3 \q_stop
8425 \tl_set:Ne \l_tmpa_tl { \int_eval:n { \l_tmpa_tl + 1 } }
8426 \tl_set:Ne \l_tmpb_tl { \int_eval:n { \l_tmpb_tl + 1 } }
8427 \int_step_inline:nnn { \l_@@_tmpd_tl } { \l_tmpb_tl }
8428 {
8429 \use:e
8430 {
8431 \@@_vline:n
8432 {
8433 position = ##1 ,
8434 start = \l_@@_tmpc_tl ,
8435 end = \int_eval:n { \l_tmpa_tl - 1 } ,
8436 total-width = \dim_use:N \l_@@_line_width_dim
8437 }
8438 }
8439 }
8440 \group_end:
8441 }

8442 \cs_new_protected:Npn \@@_hlines_block:nnn #1 #2 #3
8443 {
8444 \group_begin:
8445 \dim_set_eq:NN \l_@@_line_width_dim \arrayrulewidth
8446 \keys_set_known:nn { nicematrix / BlockBorders } { #1 }
8447 \dim_set_eq:NN \arrayrulewidth \l_@@_line_width_dim
8448 \@@_cut_on_hyphen:w #2 \q_stop
8449 \tl_set_eq:NN \l_@@_tmpc_tl \l_tmpa_tl
8450 \tl_set_eq:NN \l_@@_tmpd_tl \l_tmpb_tl
8451 \@@_cut_on_hyphen:w #3 \q_stop
8452 \tl_set:Ne \l_tmpa_tl { \int_eval:n { \l_tmpa_tl + 1 } }
8453 \tl_set:Ne \l_tmpb_tl { \int_eval:n { \l_tmpb_tl + 1 } }
8454 \int_step_inline:nnn { \l_@@_tmpc_tl } { \l_tmpa_tl }
8455 {
8456 \use:e
8457 {
8458 \@@_hline:n
8459 {
8460 position = ##1 ,
8461 start = \l_@@_tmpd_tl ,
8462 end = \int_eval:n { \l_tmpb_tl - 1 } ,
8463 total-width = \dim_use:N \l_@@_line_width_dim
8464 }
8465 }
8466 }
8467 \group_end:
8468 }

The first argument of \@@_stroke_borders_block:nnn is a list of options for the borders that you
will stroke. The second argument is the upper-left cell of the block (with, as usual, the syntax i-j)
and the third is the last cell of the block (with the same syntax).

8469 \cs_new_protected:Npn \@@_stroke_borders_block:nnn #1 #2 #3
8470 {
8471 \dim_set_eq:NN \l_@@_line_width_dim \arrayrulewidth
8472 \keys_set_known:nn { nicematrix / BlockBorders } { #1 }
8473 \dim_compare:nNnTF { \l_@@_rounded_corners_dim } > { \c_zero_dim }
8474 { \@@_error:n { borders~forbidden } }

196

8475 {
8476 \tl_clear_new:N \l_@@_borders_tikz_tl
8477 \keys_set:no
8478 { nicematrix / OnlyForTikzInBorders }
8479 \l_@@_borders_clist
8480 \@@_cut_on_hyphen:w #2 \q_stop
8481 \tl_set_eq:NN \l_@@_tmpc_tl \l_tmpa_tl
8482 \tl_set_eq:NN \l_@@_tmpd_tl \l_tmpb_tl
8483 \@@_cut_on_hyphen:w #3 \q_stop
8484 \tl_set:Ne \l_tmpa_tl { \int_eval:n { \l_tmpa_tl + 1 } }
8485 \tl_set:Ne \l_tmpb_tl { \int_eval:n { \l_tmpb_tl + 1 } }
8486 \@@_stroke_borders_block_i:
8487 }
8488 }

8489 \hook_gput_code:nnn { begindocument } { . }
8490 {
8491 \cs_new_protected:Npe \@@_stroke_borders_block_i:
8492 {
8493 \c_@@_pgfortikzpicture_tl
8494 \@@_stroke_borders_block_ii:
8495 \c_@@_endpgfortikzpicture_tl
8496 }
8497 }

8498 \cs_new_protected:Npn \@@_stroke_borders_block_ii:
8499 {
8500 \pgfrememberpicturepositiononpagetrue
8501 \pgf@relevantforpicturesizefalse
8502 \CT@arc@
8503 \pgfsetlinewidth { 1.1 \l_@@_line_width_dim }
8504 \clist_if_in:NnT \l_@@_borders_clist { right }
8505 { \@@_stroke_vertical:n \l_tmpb_tl }
8506 \clist_if_in:NnT \l_@@_borders_clist { left }
8507 { \@@_stroke_vertical:n \l_@@_tmpd_tl }
8508 \clist_if_in:NnT \l_@@_borders_clist { bottom }
8509 { \@@_stroke_horizontal:n \l_tmpa_tl }
8510 \clist_if_in:NnT \l_@@_borders_clist { top }
8511 { \@@_stroke_horizontal:n \l_@@_tmpc_tl }
8512 }

8513 \keys_define:nn { nicematrix / OnlyForTikzInBorders }
8514 {
8515 tikz .code:n =
8516 \cs_if_exist:NTF \tikzpicture
8517 { \tl_set:Nn \l_@@_borders_tikz_tl { #1 } }
8518 { \@@_error:n { tikz~in~borders~without~tikz } } ,
8519 tikz .value_required:n = true ,
8520 top .code:n = ,
8521 bottom .code:n = ,
8522 left .code:n = ,
8523 right .code:n = ,
8524 unknown .code:n = \@@_error:n { bad~border }
8525 }

The following command is used to stroke the left border and the right border. The argument #1 is
the number of column (in the sense of the col node).

8526 \cs_new_protected:Npn \@@_stroke_vertical:n #1
8527 {
8528 \@@_qpoint:n \l_@@_tmpc_tl
8529 \dim_set:Nn \l_tmpb_dim { \pgf@y + 0.5 \l_@@_line_width_dim }
8530 \@@_qpoint:n \l_tmpa_tl
8531 \dim_set:Nn \l_@@_tmpc_dim { \pgf@y + 0.5 \l_@@_line_width_dim }
8532 \@@_qpoint:n { #1 }
8533 \tl_if_empty:NTF \l_@@_borders_tikz_tl

197

8534 {
8535 \pgfpathmoveto { \pgfpoint \pgf@x \l_tmpb_dim }
8536 \pgfpathlineto { \pgfpoint \pgf@x \l_@@_tmpc_dim }
8537 \pgfusepathqstroke
8538 }
8539 {
8540 \use:e { \exp_not:N \draw [\l_@@_borders_tikz_tl] }
8541 (\pgf@x , \l_tmpb_dim) -- (\pgf@x , \l_@@_tmpc_dim) ;
8542 }
8543 }

The following command is used to stroke the top border and the bottom border. The argument #1
is the number of row (in the sense of the row node).

8544 \cs_new_protected:Npn \@@_stroke_horizontal:n #1
8545 {
8546 \@@_qpoint:n \l_@@_tmpd_tl
8547 \clist_if_in:NnTF \l_@@_borders_clist { left }
8548 { \dim_set:Nn \l_tmpa_dim { \pgf@x - 0.5 \l_@@_line_width_dim } }
8549 { \dim_set:Nn \l_tmpa_dim { \pgf@x + 0.5 \l_@@_line_width_dim } }
8550 \@@_qpoint:n \l_tmpb_tl
8551 \dim_set:Nn \l_tmpb_dim { \pgf@x + 0.5 \l_@@_line_width_dim }
8552 \@@_qpoint:n { #1 }
8553 \tl_if_empty:NTF \l_@@_borders_tikz_tl
8554 {
8555 \pgfpathmoveto { \pgfpoint \l_tmpa_dim \pgf@y }
8556 \pgfpathlineto { \pgfpoint \l_tmpb_dim \pgf@y }
8557 \pgfusepathqstroke
8558 }
8559 {
8560 \use:e { \exp_not:N \draw [\l_@@_borders_tikz_tl] }
8561 (\l_tmpa_dim , \pgf@y) -- (\l_tmpb_dim , \pgf@y) ;
8562 }
8563 }

Here is the set of keys for the command \@@_stroke_borders_block:nnn.
8564 \keys_define:nn { nicematrix / BlockBorders }
8565 {
8566 borders .clist_set:N = \l_@@_borders_clist ,
8567 rounded-corners .dim_set:N = \l_@@_rounded_corners_dim ,
8568 rounded-corners .default:n = 4 pt ,
8569 line-width .dim_set:N = \l_@@_line_width_dim
8570 }

The following command will be used if the key tikz has been used for the command \Block.
#1 is a list of lists of Tikz keys used with the path.
Example: {{offset=1pt,draw,red},{offset=2pt,draw,blue}}
which arises from a command such as :
\Block[tikz={offset=1pt,draw,red},tikz={offset=2pt,draw,blue}]{2-2}{}
The arguments #2 and #3 are the coordinates of the first cell and #4 and #5 the coordinates of the
last cell of the block.

8571 \cs_new_protected:Npn \@@_block_tikz:nnnnn #1 #2 #3 #4 #5
8572 {
8573 \begin { tikzpicture }
8574 \@@_clip_with_rounded_corners:

We use clist_map_inline:nn because #5 is a list of lists.
8575 \clist_map_inline:nn { #1 }
8576 {

198

We extract the key offset which is not a key of TikZ but a key added by nicematrix.
8577 \keys_set_known:nnN { nicematrix / SpecialOffset } { ##1 } \l_tmpa_tl
8578 \use:e { \exp_not:N \path [\l_tmpa_tl] }
8579 (
8580 [
8581 xshift = \dim_use:N \l_@@_offset_dim ,
8582 yshift = - \dim_use:N \l_@@_offset_dim
8583]
8584 #2 -| #3
8585)
8586 rectangle
8587 (
8588 [
8589 xshift = - \dim_use:N \l_@@_offset_dim ,
8590 yshift = \dim_use:N \l_@@_offset_dim
8591]
8592 \int_eval:n { #4 + 1 } -| \int_eval:n { #5 + 1 }
8593) ;
8594 }
8595 \end { tikzpicture }
8596 }
8597 \cs_generate_variant:Nn \@@_block_tikz:nnnnn { o }

8598 \keys_define:nn { nicematrix / SpecialOffset }
8599 { offset .dim_set:N = \l_@@_offset_dim }

In some circonstancies, we want to nullify the command \Block. In order to reach that goal, we will
link the command \Block to the following command \@@_NullBlock: which has the same syntax as
the standard command \Block but which is no-op.

8600 \cs_new_protected:Npn \@@_NullBlock:
8601 { \@@_collect_options:n { \@@_NullBlock_i: } }
8602 \NewExpandableDocumentCommand \@@_NullBlock_i: { m m D < > { } +m }
8603 { }

The following command will be linked to \cellcolor in the sub-cells of a block which contains
ampersands (&). Of course, &-in-blocks must be in force.

8604 \NewDocumentCommand \@@_subcellcolor { O { } m }
8605 {
8606 \tl_gput_right:Ne \g_@@_pre_code_before_tl
8607 {

We must not expand the color (#2) because the color may contain the token ! which may be activated
by some packages (ex.: babel with the option french on latex and pdflatex).

8608 \@@_subcellcolor:nnnnnnn
8609 {
8610 \tl_if_blank:nTF { #1 }
8611 { { \exp_not:n { #2 } } }
8612 { [#1] { \exp_not:n { #2 } } }
8613 }
8614 { \int_use:N \l_@@_first_row_int } % first row of the block
8615 { \int_use:N \l_@@_first_col_int } % first column of the block
8616 { \int_use:N \l_@@_last_row_int } % last row of the block
8617 { \int_use:N \l_@@_last_col_int } % last column of the block
8618 { \int_use:N \l_@@_split_int }
8619 { \int_use:N \l_@@_split_i_int }
8620 }
8621 \ignorespaces
8622 }

8623 \cs_new_protected:Npn \@@_subcellcolor:nnnnnnn #1 #2 #3 #4 #5 #6 #7
8624 {
8625 \@@_color_opacity: #1

199

8626 \pgfpicture
8627 \pgf@relevantforpicturesizefalse
8628 \@@_qpoint:n { col - #3 }
8629 \dim_set_eq:NN \l_@@_tmpc_dim \pgf@x
8630 \@@_qpoint:n { col - \int_eval:n { #5 + 1 } }
8631 \dim_set:Nn \l_tmpa_dim { (\pgf@x - \l_@@_tmpc_dim) / #6 }
8632 \dim_set:Nn \l_tmpb_dim { \l_@@_tmpc_dim + #7 \l_tmpa_dim }
8633 \@@_qpoint:n { row - \int_eval:n { #4 + 1 } }
8634 \dim_set_eq:NN \l_@@_tmpc_dim \pgf@y
8635 \@@_qpoint:n { row - #2 }
8636 \pgfpathrectanglecorners
8637 { \pgfpoint { \l_tmpb_dim - \l_tmpa_dim } { \l_@@_tmpc_dim } }
8638 { \pgfpoint { \l_tmpb_dim } { \pgf@y } }
8639 \pgfusepathqfill
8640 \endpgfpicture
8641 }

27 How to draw the dotted lines transparently

8642 \cs_set_protected:Npn \@@_renew_matrix:
8643 {
8644 \RenewDocumentEnvironment { pmatrix } { }
8645 { \pNiceMatrix }
8646 { \endpNiceMatrix }
8647 \RenewDocumentEnvironment { vmatrix } { }
8648 { \vNiceMatrix }
8649 { \endvNiceMatrix }
8650 \RenewDocumentEnvironment { Vmatrix } { }
8651 { \VNiceMatrix }
8652 { \endVNiceMatrix }
8653 \RenewDocumentEnvironment { bmatrix } { }
8654 { \bNiceMatrix }
8655 { \endbNiceMatrix }
8656 \RenewDocumentEnvironment { Bmatrix } { }
8657 { \BNiceMatrix }
8658 { \endBNiceMatrix }
8659 }

28 Automatic arrays

We will extract some keys and pass the other keys to the environment {NiceArrayWithDelims}.
8660 \keys_define:nn { nicematrix / Auto }
8661 {
8662 columns-type .tl_set:N = \l_@@_columns_type_tl ,
8663 columns-type .value_required:n = true ,
8664 l .meta:n = { columns-type = l } ,
8665 r .meta:n = { columns-type = r } ,
8666 c .meta:n = { columns-type = c } ,
8667 delimiters / color .tl_set:N = \l_@@_delimiters_color_tl ,
8668 delimiters / color .value_required:n = true ,
8669 delimiters / max-width .bool_set:N = \l_@@_delimiters_max_width_bool ,
8670 delimiters / max-width .default:n = true ,
8671 delimiters .code:n = \keys_set:nn { nicematrix / delimiters } { #1 } ,
8672 delimiters .value_required:n = true ,
8673 rounded-corners .dim_set:N = \l_@@_tab_rounded_corners_dim ,
8674 rounded-corners .default:n = 4 pt
8675 }

200

8676 \NewDocumentCommand \AutoNiceMatrixWithDelims
8677 { m m O { } > { \SplitArgument { 1 } { - } } m O { } m ! O { } }
8678 { \@@_auto_nice_matrix:nnnnnn { #1 } { #2 } #4 { #6 } { #3 , #5 , #7 } }

8679 \cs_new_protected:Npn \@@_auto_nice_matrix:nnnnnn #1 #2 #3 #4 #5 #6
8680 {

The group is for the protection of the keys.
8681 \group_begin:
8682 \keys_set_known:nnN { nicematrix / Auto } { #6 } \l_tmpa_tl
8683 \use:e
8684 {
8685 \exp_not:N \begin { NiceArrayWithDelims } { #1 } { #2 }
8686 { * { #4 } { \exp_not:o \l_@@_columns_type_tl } }
8687 [\exp_not:o \l_tmpa_tl]
8688 }
8689 \int_if_zero:nT { \l_@@_first_row_int }
8690 {
8691 \int_if_zero:nT { \l_@@_first_col_int } { & }
8692 \prg_replicate:nn { #4 - 1 } { & }
8693 \int_compare:nNnT { \l_@@_last_col_int } > { -1 } { & } \\
8694 }
8695 \prg_replicate:nn { #3 }
8696 {
8697 \int_if_zero:nT { \l_@@_first_col_int } { & }

We put { } before #6 to avoid a hasty expansion of a potential \arabic{iRow} at the beginning of
the row which would result in an incorrect value of that iRow (since iRow is incremented in the first
cell of the row of the \halign).

8698 \prg_replicate:nn { #4 - 1 } { { } #5 & } #5
8699 \int_compare:nNnT { \l_@@_last_col_int } > { -1 } { & } \\
8700 }
8701 \int_compare:nNnT { \l_@@_last_row_int } > { -2 }
8702 {
8703 \int_if_zero:nT { \l_@@_first_col_int } { & }
8704 \prg_replicate:nn { #4 - 1 } { & }
8705 \int_compare:nNnT { \l_@@_last_col_int } > { -1 } { & } \\
8706 }
8707 \end { NiceArrayWithDelims }
8708 \group_end:
8709 }

8710 \cs_set_protected:Npn \@@_define_com:NNN #1 #2 #3
8711 {
8712 \cs_set_protected:cpn { #1 AutoNiceMatrix }
8713 {
8714 \bool_gset_true:N \g_@@_delims_bool
8715 \str_gset:Ne \g_@@_name_env_str { #1 AutoNiceMatrix }
8716 \AutoNiceMatrixWithDelims { #2 } { #3 }
8717 }
8718 }

We define also a command \AutoNiceMatrix similar to the environment {NiceMatrix}.
8719 \NewDocumentCommand \AutoNiceMatrix { O { } m O { } m ! O { } }
8720 {
8721 \group_begin:
8722 \bool_gset_false:N \g_@@_delims_bool
8723 \AutoNiceMatrixWithDelims . . { #2 } { #4 } [#1 , #3 , #5]
8724 \group_end:
8725 }

201

29 The redefinition of the command \dotfill

8726 \cs_set_eq:NN \@@_old_dotfill: \dotfill
8727 \cs_new_protected:Npn \@@_dotfill:
8728 {

First, we insert \@@_dotfill (which is the saved version of \dotfill) in case of use of \dotfill
“internally” in the cell (e.g. \hbox to 1cm {\dotfill}).

8729 \@@_old_dotfill:
8730 \tl_gput_right:Nn \g_@@_cell_after_hook_tl \@@_dotfill_i:
8731 }

Now, if the box if not empty (unfornately, we can’t actually test whether the box is empty and that’s
why we only consider it’s width), we insert \@@_dotfill (which is the saved version of \dotfill) in
the cell of the array, and it will extend, since it is no longer in \l_@@_cell_box.

8732 \cs_new_protected:Npn \@@_dotfill_i:
8733 {
8734 \dim_compare:nNnT { \box_wd:N \l_@@_cell_box } = { \c_zero_dim }
8735 { \@@_old_dotfill: }
8736 }

30 The command \diagbox

The command \diagbox will be linked to \diagbox:nn in the environments of nicematrix. However,
there are also redefinitions of \diagbox in other circonstancies.

8737 \cs_new_protected:Npn \@@_diagbox:nn #1 #2
8738 {
8739 \tl_gput_right:Ne \g_@@_pre_code_after_tl
8740 {
8741 \@@_actually_diagbox:nnnnnn
8742 { \int_use:N \c@iRow }
8743 { \int_use:N \c@jCol }
8744 { \int_use:N \c@iRow }
8745 { \int_use:N \c@jCol }

\g_@@_row_style_tl contains several instructions of the form:
\@@_if_row_less_than:nn { number } { instructions }

The command \@@_if_row_less:nn is fully expandable and, thus, the instructions will be inserted
in the \g_@@_pre_code_after_tl only if \diagbox is used in a row which is the scope of that chunk
of instructions.

8746 { \g_@@_row_style_tl \exp_not:n { #1 } }
8747 { \g_@@_row_style_tl \exp_not:n { #2 } }
8748 }

We put the cell with \diagbox in the sequence \g_@@_pos_of_blocks_seq because a cell with
\diagbox must be considered as non empty by the key corners.

8749 \seq_gput_right:Ne \g_@@_pos_of_blocks_seq
8750 {
8751 { \int_use:N \c@iRow }
8752 { \int_use:N \c@jCol }
8753 { \int_use:N \c@iRow }
8754 { \int_use:N \c@jCol }

The last argument is for the name of the block.
8755 { }
8756 }
8757 }

202

The command \diagbox is also redefined locally when we draw a block.
The first four arguments of \@@_actually_diagbox:nnnnnn correspond to the rectangle (=block) to
slash (we recall that it’s possible to use \diagbox in a \Block). The other two are the elements to
draw below and above the diagonal line.

8758 \cs_new_protected:Npn \@@_actually_diagbox:nnnnnn #1 #2 #3 #4 #5 #6
8759 {
8760 \pgfpicture
8761 \pgf@relevantforpicturesizefalse
8762 \pgfrememberpicturepositiononpagetrue
8763 \@@_qpoint:n { row - #1 }
8764 \dim_set_eq:NN \l_tmpa_dim \pgf@y
8765 \@@_qpoint:n { col - #2 }
8766 \dim_set_eq:NN \l_tmpb_dim \pgf@x
8767 \pgfpathmoveto { \pgfpoint \l_tmpb_dim \l_tmpa_dim }
8768 \@@_qpoint:n { row - \int_eval:n { #3 + 1 } }
8769 \dim_set_eq:NN \l_@@_tmpc_dim \pgf@y
8770 \@@_qpoint:n { col - \int_eval:n { #4 + 1 } }
8771 \dim_set_eq:NN \l_@@_tmpd_dim \pgf@x
8772 \pgfpathlineto { \pgfpoint \l_@@_tmpd_dim \l_@@_tmpc_dim }
8773 {

The command \CT@arc@ is a command of colortbl which sets the color of the rules in the array. The
package nicematrix uses it even if colortbl is not loaded.

8774 \CT@arc@
8775 \pgfsetroundcap
8776 \pgfusepathqstroke
8777 }
8778 \pgfset { inner~sep = 1 pt }
8779 \pgfscope
8780 \pgftransformshift { \pgfpoint \l_tmpb_dim \l_@@_tmpc_dim }
8781 \pgfnode { rectangle } { south~west }
8782 {
8783 \begin { minipage } { 20 cm }

The \scan_stop: avoids an error in math mode when the argument #5 is empty.
8784 \@@_math_toggle: \scan_stop: #5 \@@_math_toggle:
8785 \end { minipage }
8786 }
8787 { }
8788 { }
8789 \endpgfscope
8790 \pgftransformshift { \pgfpoint \l_@@_tmpd_dim \l_tmpa_dim }
8791 \pgfnode { rectangle } { north~east }
8792 {
8793 \begin { minipage } { 20 cm }
8794 \raggedleft
8795 \@@_math_toggle: \scan_stop: #6 \@@_math_toggle:
8796 \end { minipage }
8797 }
8798 { }
8799 { }
8800 \endpgfpicture
8801 }

31 The keyword \CodeAfter

In fact, in this subsection, we define the user command \CodeAfter for the case of the “normal
syntax”. For the case of “light-syntax”, see the definition of the environment {@@-light-syntax} on
p. 87.

203

In the environments of nicematrix, \CodeAfter will be linked to \@@_CodeAfter:. That macro must
not be protected since it begins with \omit.

8802 \cs_new:Npn \@@_CodeAfter: { \omit \@@_CodeAfter_ii:n }

However, in each cell of the environment, the command \CodeAfter will be linked to the following
command \@@_CodeAfter_ii:n which begins with \\.

8803 \cs_new_protected:Npn \@@_CodeAfter_i: { \\ \omit \@@_CodeAfter_ii:n }

We have to catch everything until the end of the current environment (of nicematrix). First, we go
until the next command \end.

8804 \cs_new_protected:Npn \@@_CodeAfter_ii:n #1 \end
8805 {
8806 \tl_gput_right:Nn \g_nicematrix_code_after_tl { #1 }
8807 \@@_CodeAfter_iv:n
8808 }

We catch the argument of the command \end (in #1).
8809 \cs_new_protected:Npn \@@_CodeAfter_iv:n #1
8810 {

If this is really the end of the current environment (of nicematrix), we put back the command \end
and its argument in the TeX flow.

8811 \str_if_eq:eeTF { \@currenvir } { #1 }
8812 { \end { #1 } }

If this is not the \end we are looking for, we put those tokens in \g_nicematrix_code_after_tl
and we go on searching for the next command \end with a recursive call to the command
\@@_CodeAfter:n.

8813 {
8814 \tl_gput_right:Nn \g_nicematrix_code_after_tl { \end { #1 } }
8815 \@@_CodeAfter_ii:n
8816 }
8817 }

32 The delimiters in the preamble

The command \@@_delimiter:nnn will be used to draw delimiters inside the matrix when delimiters
are specified in the preamble of the array. It does not concern the exterior delimiters added by
{NiceArrayWithDelims} (and {pNiceArray}, {pNiceMatrix}, etc.).
A delimiter in the preamble of the array will write an instruction \@@_delimiter:nnn in the
\g_@@_pre_code_after_tl (and also potentially add instructions in the preamble provided to \array
in order to add space between columns).
The first argument is the type of delimiter ((, [, \{,),] or \}). The second argument is the number
of column. The third argument is a boolean equal to \c_true_bool (resp. \c_false_true) when
the delimiter must be put on the left (resp. right) side.

8818 \cs_new_protected:Npn \@@_delimiter:nnn #1 #2 #3
8819 {
8820 \pgfpicture
8821 \pgfrememberpicturepositiononpagetrue
8822 \pgf@relevantforpicturesizefalse

\l_@@_y_initial_dim and \l_@@_y_final_dim will be the y-values of the extremities of the delimiter
we will have to construct.

8823 \@@_qpoint:n { row - 1 }
8824 \dim_set_eq:NN \l_@@_y_initial_dim \pgf@y
8825 \@@_qpoint:n { row - \int_eval:n { \c@iRow + 1 } }
8826 \dim_set_eq:NN \l_@@_y_final_dim \pgf@y

204

We will compute in \l_tmpa_dim the x-value where we will have to put our delimiter (on the left
side or on the right side).

8827 \bool_if:nTF { #3 }
8828 { \dim_set_eq:NN \l_tmpa_dim \c_max_dim }
8829 { \dim_set:Nn \l_tmpa_dim { - \c_max_dim } }
8830 \int_step_inline:nnn { \l_@@_first_row_int } { \g_@@_row_total_int }
8831 {
8832 \cs_if_exist:cT
8833 { pgf @ sh @ ns @ \@@_env: - ##1 - #2 }
8834 {
8835 \pgfpointanchor
8836 { \@@_env: - ##1 - #2 }
8837 { \bool_if:nTF { #3 } { west } { east } }
8838 \dim_set:Nn \l_tmpa_dim
8839 {
8840 \bool_if:nTF { #3 }
8841 { \dim_min:nn }
8842 { \dim_max:nn }
8843 \l_tmpa_dim
8844 { \pgf@x }
8845 }
8846 }
8847 }

Now we can put the delimiter with a node of pgf.
8848 \pgfset { inner~sep = \c_zero_dim }
8849 \dim_zero:N \nulldelimiterspace
8850 \pgftransformshift
8851 {
8852 \pgfpoint
8853 { \l_tmpa_dim }
8854 { (\l_@@_y_initial_dim + \l_@@_y_final_dim + \arrayrulewidth) / 2 }
8855 }
8856 \pgfnode
8857 { rectangle }
8858 { \bool_if:nTF { #3 } { east } { west } }
8859 {

Here is the content of the pgf node, that is to say the delimiter, constructed with its right size.
8860 \nullfont
8861 $ % $
8862 \@@_color:o \l_@@_delimiters_color_tl
8863 \bool_if:nTF { #3 } { \left #1 } { \left . }
8864 \vcenter
8865 {
8866 \nullfont
8867 \hrule \@height
8868 \dim_eval:n { \l_@@_y_initial_dim - \l_@@_y_final_dim }
8869 \@depth \c_zero_dim
8870 \@width \c_zero_dim
8871 }
8872 \bool_if:nTF { #3 } { \right . } { \right #1 }
8873 $ % $
8874 }
8875 { }
8876 { }
8877 \endpgfpicture
8878 }

33 The command \SubMatrix

205

8879 \keys_define:nn { nicematrix / sub-matrix }
8880 {
8881 extra-height .dim_set:N = \l_@@_submatrix_extra_height_dim ,
8882 extra-height .value_required:n = true ,
8883 left-xshift .dim_set:N = \l_@@_submatrix_left_xshift_dim ,
8884 left-xshift .value_required:n = true ,
8885 right-xshift .dim_set:N = \l_@@_submatrix_right_xshift_dim ,
8886 right-xshift .value_required:n = true ,
8887 xshift .meta:n = { left-xshift = #1, right-xshift = #1 } ,
8888 xshift .value_required:n = true ,
8889 delimiters / color .tl_set:N = \l_@@_delimiters_color_tl ,
8890 delimiters / color .value_required:n = true ,
8891 slim .bool_set:N = \l_@@_submatrix_slim_bool ,
8892 slim .default:n = true ,
8893 hlines .clist_set:N = \l_@@_submatrix_hlines_clist ,
8894 hlines .default:n = all ,
8895 vlines .clist_set:N = \l_@@_submatrix_vlines_clist ,
8896 vlines .default:n = all ,
8897 hvlines .meta:n = { hlines, vlines } ,
8898 hvlines .value_forbidden:n = true
8899 }
8900 \keys_define:nn { nicematrix }
8901 {
8902 SubMatrix .inherit:n = nicematrix / sub-matrix ,
8903 NiceArray / sub-matrix .inherit:n = nicematrix / sub-matrix ,
8904 pNiceArray / sub-matrix .inherit:n = nicematrix / sub-matrix ,
8905 NiceMatrixOptions / sub-matrix .inherit:n = nicematrix / sub-matrix ,
8906 }

The following keys set is for the command \SubMatrix itself (not the tuning of \SubMatrix that can
be done elsewhere).

8907 \keys_define:nn { nicematrix / SubMatrix }
8908 {
8909 delimiters / color .tl_set:N = \l_@@_delimiters_color_tl ,
8910 delimiters / color .value_required:n = true ,
8911 hlines .clist_set:N = \l_@@_submatrix_hlines_clist ,
8912 hlines .default:n = all ,
8913 vlines .clist_set:N = \l_@@_submatrix_vlines_clist ,
8914 vlines .default:n = all ,
8915 hvlines .meta:n = { hlines, vlines } ,
8916 hvlines .value_forbidden:n = true ,
8917 name .code:n =
8918 \tl_if_empty:nTF { #1 }
8919 { \@@_error:n { Invalid~name } }
8920 {
8921 \regex_if_match:nnTF { \A[A-Za-z][A-Za-z0-9]*\Z } { #1 }
8922 {
8923 \seq_if_in:NnTF \g_@@_submatrix_names_seq { #1 }
8924 { \@@_error:nn { Duplicate~name~for~SubMatrix } { #1 } }
8925 {
8926 \str_set:Nn \l_@@_submatrix_name_str { #1 }
8927 \seq_gput_right:Nn \g_@@_submatrix_names_seq { #1 }
8928 }
8929 }
8930 { \@@_error:n { Invalid~name } }
8931 } ,
8932 name .value_required:n = true ,
8933 rules .code:n = \keys_set:nn { nicematrix / rules } { #1 } ,
8934 rules .value_required:n = true ,
8935 code .tl_set:N = \l_@@_code_tl ,
8936 code .value_required:n = true ,
8937 unknown .code:n = \@@_error:n { Unknown~key~for~SubMatrix }
8938 }

206

8939 \NewDocumentCommand \@@_SubMatrix_in_code_before { m m m m ! O { } }
8940 {
8941 \tl_gput_right:Ne \g_@@_pre_code_after_tl
8942 {
8943 \SubMatrix { #1 } { #2 } { #3 } { #4 }
8944 [
8945 delimiters / color = \l_@@_delimiters_color_tl ,
8946 hlines = \l_@@_submatrix_hlines_clist ,
8947 vlines = \l_@@_submatrix_vlines_clist ,
8948 extra-height = \dim_use:N \l_@@_submatrix_extra_height_dim ,
8949 left-xshift = \dim_use:N \l_@@_submatrix_left_xshift_dim ,
8950 right-xshift = \dim_use:N \l_@@_submatrix_right_xshift_dim ,
8951 slim = \bool_to_str:N \l_@@_submatrix_slim_bool ,
8952 #5
8953]
8954 }
8955 \@@_SubMatrix_in_code_before_i { #2 } { #3 }
8956 \ignorespaces
8957 }

8958 \NewDocumentCommand \@@_SubMatrix_in_code_before_i
8959 { > { \SplitArgument { 1 } { - } } m > { \SplitArgument { 1 } { - } } m }
8960 { \@@_SubMatrix_in_code_before_i:nnnn #1 #2 }

8961 \cs_new_protected:Npn \@@_SubMatrix_in_code_before_i:nnnn #1 #2 #3 #4
8962 {
8963 \seq_gput_right:Ne \g_@@_submatrix_seq
8964 {

We use \str_if_eq:eeTF because it is fully expandable (and slightly faster than \tl_if_eq:nnTF).
8965 { \str_if_eq:eeTF { #1 } { last } { \int_use:N \c@iRow } { #1 } }
8966 { \str_if_eq:eeTF { #2 } { last } { \int_use:N \c@jCol } { #2 } }
8967 { \str_if_eq:eeTF { #3 } { last } { \int_use:N \c@iRow } { #3 } }
8968 { \str_if_eq:eeTF { #4 } { last } { \int_use:N \c@jCol } { #4 } }
8969 }
8970 }

The following macro will compute \l_@@_first_i_tl, \l_@@_first_j_tl, \l_@@_last_i_tl and
\l_@@_last_j_tl from the arguments of the command as provided by the user (for example 2-3 and
5-last).

8971 \NewDocumentCommand \@@_compute_i_j:nn
8972 { > { \SplitArgument { 1 } { - } } m > { \SplitArgument { 1 } { - } } m }
8973 { \@@_compute_i_j:nnnn #1 #2 }

8974 \cs_new_protected:Npn \@@_compute_i_j:nnnn #1 #2 #3 #4
8975 {
8976 \def \l_@@_first_i_tl { #1 }
8977 \def \l_@@_first_j_tl { #2 }
8978 \def \l_@@_last_i_tl { #3 }
8979 \def \l_@@_last_j_tl { #4 }
8980 \tl_if_eq:NnT \l_@@_first_i_tl { last }
8981 { \tl_set:NV \l_@@_first_i_tl \c@iRow }
8982 \tl_if_eq:NnT \l_@@_first_j_tl { last }
8983 { \tl_set:NV \l_@@_first_j_tl \c@jCol }
8984 \tl_if_eq:NnT \l_@@_last_i_tl { last }
8985 { \tl_set:NV \l_@@_last_i_tl \c@iRow }
8986 \tl_if_eq:NnT \l_@@_last_j_tl { last }
8987 { \tl_set:NV \l_@@_last_j_tl \c@jCol }
8988 }

In the pre-code-after and in the \CodeAfter the following command \@@_SubMatrix will be linked
to \SubMatrix.

• #1 is the left delimiter;

• #2 is the upper-left cell of the matrix with the format i-j;

207

• #3 is the lower-right cell of the matrix with the format i-j;

• #4 is the right delimiter;

• #5 is the list of options of the command;

• #6 is the potential subscript;

• #7 is the potential superscript.

For explanations about the construction with rescanning of the preamble, see the documentation for
the user command \Cdots.

8989 \hook_gput_code:nnn { begindocument } { . }
8990 {
8991 \tl_set_rescan:Nnn \l_tmpa_tl { } { m m m m O { } E { _ ^ } { { } { } } }
8992 \exp_args:NNo \NewDocumentCommand \@@_SubMatrix \l_tmpa_tl
8993 { \@@_sub_matrix:nnnnnnn { #1 } { #2 } { #3 } { #4 } { #5 } { #6 } { #7 } }
8994 }

8995 \cs_new_protected:Npn \@@_sub_matrix:nnnnnnn #1 #2 #3 #4 #5 #6 #7
8996 {
8997 \group_begin:

The four following token lists correspond to the position of the \SubMatrix.
8998 \@@_compute_i_j:nn { #2 } { #3 }
8999 \int_compare:nNnT { \l_@@_first_i_tl } = { \l_@@_last_i_tl }
9000 { \def \arraystretch { 1 } }
9001 \bool_lazy_or:nnTF
9002 { \int_compare_p:nNn { \l_@@_last_i_tl } > { \g_@@_row_total_int } }
9003 { \int_compare_p:nNn { \l_@@_last_j_tl } > { \g_@@_col_total_int } }
9004 { \@@_error:nn { Construct~too~large } { \SubMatrix } }
9005 {
9006 \str_clear_new:N \l_@@_submatrix_name_str
9007 \keys_set:nn { nicematrix / SubMatrix } { #5 }
9008 \pgfpicture
9009 \pgfrememberpicturepositiononpagetrue
9010 \pgf@relevantforpicturesizefalse
9011 \pgfset { inner~sep = \c_zero_dim }
9012 \dim_set_eq:NN \l_@@_x_initial_dim \c_max_dim
9013 \dim_set:Nn \l_@@_x_final_dim { - \c_max_dim }

The last value of \int_step_inline:nnn is provided by curryfication.
9014 \bool_if:NTF \l_@@_submatrix_slim_bool
9015 { \int_step_inline:nnn { \l_@@_first_i_tl } { \l_@@_last_i_tl } }
9016 { \int_step_inline:nnn { \l_@@_first_row_int } { \g_@@_row_total_int } }
9017 {
9018 \cs_if_exist:cT
9019 { pgf @ sh @ ns @ \@@_env: - ##1 - \l_@@_first_j_tl }
9020 {
9021 \pgfpointanchor { \@@_env: - ##1 - \l_@@_first_j_tl } { west }
9022 \dim_compare:nNnT { \pgf@x } < { \l_@@_x_initial_dim }
9023 { \dim_set_eq:NN \l_@@_x_initial_dim \pgf@x }
9024 }
9025 \cs_if_exist:cT
9026 { pgf @ sh @ ns @ \@@_env: - ##1 - \l_@@_last_j_tl }
9027 {
9028 \pgfpointanchor { \@@_env: - ##1 - \l_@@_last_j_tl } { east }
9029 \dim_compare:nNnT { \pgf@x } > { \l_@@_x_final_dim }
9030 { \dim_set_eq:NN \l_@@_x_final_dim \pgf@x }
9031 }
9032 }
9033 \dim_compare:nNnTF { \l_@@_x_initial_dim } = { \c_max_dim }
9034 { \@@_error:nn { Impossible~delimiter } { left } }
9035 {
9036 \dim_compare:nNnTF { \l_@@_x_final_dim } = { - \c_max_dim }

208

9037 { \@@_error:nn { Impossible~delimiter } { right } }
9038 { \@@_sub_matrix_i:nnnn { #1 } { #4 } { #6 } { #7 } }
9039 }
9040 \endpgfpicture
9041 }
9042 \group_end:
9043 \ignorespaces
9044 }

#1 is the left delimiter, #2 is the right one, #3 is the subscript and #4 is the superscript.
9045 \cs_new_protected:Npn \@@_sub_matrix_i:nnnn #1 #2 #3 #4
9046 {
9047 \@@_qpoint:n { row - \l_@@_first_i_tl - base }
9048 \dim_set:Nn \l_@@_y_initial_dim
9049 {
9050 \fp_to_dim:n
9051 {
9052 \pgf@y
9053 + (\box_ht:N \strutbox + \extrarowheight) * \arraystretch
9054 }
9055 }
9056 \@@_qpoint:n { row - \l_@@_last_i_tl - base }
9057 \dim_set:Nn \l_@@_y_final_dim
9058 { \fp_to_dim:n { \pgf@y - (\box_dp:N \strutbox) * \arraystretch } }
9059 \int_step_inline:nnn { \l_@@_first_col_int } { \g_@@_col_total_int }
9060 {
9061 \cs_if_exist:cT
9062 { pgf @ sh @ ns @ \@@_env: - \l_@@_first_i_tl - ##1 }
9063 {
9064 \pgfpointanchor { \@@_env: - \l_@@_first_i_tl - ##1 } { north }
9065 \dim_set:Nn \l_@@_y_initial_dim
9066 { \dim_max:nn { \l_@@_y_initial_dim } { \pgf@y } }
9067 }
9068 \cs_if_exist:cT
9069 { pgf @ sh @ ns @ \@@_env: - \l_@@_last_i_tl - ##1 }
9070 {
9071 \pgfpointanchor { \@@_env: - \l_@@_last_i_tl - ##1 } { south }
9072 \dim_compare:nNnT { \pgf@y } < { \l_@@_y_final_dim }
9073 { \dim_set_eq:NN \l_@@_y_final_dim \pgf@y }
9074 }
9075 }
9076 \dim_set:Nn \l_tmpa_dim
9077 {
9078 \l_@@_y_initial_dim - \l_@@_y_final_dim +
9079 \l_@@_submatrix_extra_height_dim - \arrayrulewidth
9080 }
9081 \dim_zero:N \nulldelimiterspace

We will draw the rules in the \SubMatrix.
9082 \group_begin:
9083 \pgfsetlinewidth { 1.1 \arrayrulewidth }
9084 \@@_set_CTarc:o \l_@@_rules_color_tl
9085 \CT@arc@

Now, we draw the potential vertical rules specified in the preamble of the environments with the
letter fixed with the key vlines-in-sub-matrix. The list of the columns where there is such rule to
draw is in \g_@@_cols_vlism_seq.

9086 \seq_map_inline:Nn \g_@@_cols_vlism_seq
9087 {
9088 \int_compare:nNnT { \l_@@_first_j_tl } < { ##1 }
9089 {
9090 \int_compare:nNnT
9091 { ##1 } < { \int_eval:n { \l_@@_last_j_tl + 1 } }

209

9092 {

First, we extract the value of the abscissa of the rule we have to draw.
9093 \@@_qpoint:n { col - ##1 }
9094 \pgfpathmoveto { \pgfpoint \pgf@x \l_@@_y_initial_dim }
9095 \pgfpathlineto { \pgfpoint \pgf@x \l_@@_y_final_dim }
9096 \pgfusepathqstroke
9097 }
9098 }
9099 }

Now, we draw the vertical rules specified in the key vlines of \SubMatrix. The last argument of
\int_step_inline:nn or \clist_map_inline:Nn is given by curryfication.

9100 \str_if_eq:eeTF { \l_@@_submatrix_vlines_clist } { all }
9101 { \int_step_inline:nn { \l_@@_last_j_tl - \l_@@_first_j_tl } }
9102 { \clist_map_inline:Nn \l_@@_submatrix_vlines_clist }
9103 {
9104 \bool_lazy_and:nnTF
9105 { \int_compare_p:nNn { ##1 } > { \c_zero_int } }
9106 {
9107 \int_compare_p:nNn
9108 { ##1 } < { \l_@@_last_j_tl - \l_@@_first_j_tl + 1 } }
9109 {
9110 \@@_qpoint:n { col - \int_eval:n { ##1 + \l_@@_first_j_tl } }
9111 \pgfpathmoveto { \pgfpoint \pgf@x \l_@@_y_initial_dim }
9112 \pgfpathlineto { \pgfpoint \pgf@x \l_@@_y_final_dim }
9113 \pgfusepathqstroke
9114 }
9115 { \@@_error:nnn { Wrong~line~in~SubMatrix } { vertical } { ##1 } }
9116 }

Now, we draw the horizontal rules specified in the key hlines of \SubMatrix. The last argument of
\int_step_inline:nn or \clist_map_inline:Nn is given by curryfication.

9117 \str_if_eq:eeTF { \l_@@_submatrix_hlines_clist } { all }
9118 { \int_step_inline:nn { \l_@@_last_i_tl - \l_@@_first_i_tl } }
9119 { \clist_map_inline:Nn \l_@@_submatrix_hlines_clist }
9120 {
9121 \bool_lazy_and:nnTF
9122 { \int_compare_p:nNn { ##1 } > { \c_zero_int } }
9123 {
9124 \int_compare_p:nNn
9125 { ##1 } < { \l_@@_last_i_tl - \l_@@_first_i_tl + 1 } }
9126 {
9127 \@@_qpoint:n { row - \int_eval:n { ##1 + \l_@@_first_i_tl } }

We use a group to protect \l_tmpa_dim and \l_tmpb_dim.
9128 \group_begin:

We compute in \l_tmpa_dim the x-value of the left end of the rule.
9129 \dim_set:Nn \l_tmpa_dim
9130 { \l_@@_x_initial_dim - \l_@@_submatrix_left_xshift_dim }
9131 \str_case:nn { #1 }
9132 {
9133 ({ \dim_sub:Nn \l_tmpa_dim { 0.9 mm } }
9134 [{ \dim_sub:Nn \l_tmpa_dim { 0.2 mm } }
9135 \{ { \dim_sub:Nn \l_tmpa_dim { 0.9 mm } }
9136 }
9137 \pgfpathmoveto { \pgfpoint \l_tmpa_dim \pgf@y }

We compute in \l_tmpb_dim the x-value of the right end of the rule.
9138 \dim_set:Nn \l_tmpb_dim
9139 { \l_@@_x_final_dim + \l_@@_submatrix_right_xshift_dim }
9140 \str_case:nn { #2 }
9141 {
9142) { \dim_add:Nn \l_tmpb_dim { 0.9 mm } }

210

9143] { \dim_add:Nn \l_tmpb_dim { 0.2 mm } }
9144 \} { \dim_add:Nn \l_tmpb_dim { 0.9 mm } }
9145 }
9146 \pgfpathlineto { \pgfpoint \l_tmpb_dim \pgf@y }
9147 \pgfusepathqstroke
9148 \group_end:
9149 }
9150 { \@@_error:nnn { Wrong~line~in~SubMatrix } { horizontal } { ##1 } }
9151 }

If the key name has been used for the command \SubMatrix, we create a PGF node with that name
for the submatrix (this node does not encompass the delimiters that we will put after).

9152 \str_if_empty:NF \l_@@_submatrix_name_str
9153 {
9154 \@@_pgf_rect_node:nnnnn \l_@@_submatrix_name_str
9155 \l_@@_x_initial_dim \l_@@_y_initial_dim
9156 \l_@@_x_final_dim \l_@@_y_final_dim
9157 }
9158 \group_end:

The group was for \CT@arc@ (the color of the rules).

Now, we deal with the left delimiter. Of course, the environment {pgfscope} is for the
\pgftransformshift.

9159 \begin { pgfscope }
9160 \pgftransformshift
9161 {
9162 \pgfpoint
9163 { \l_@@_x_initial_dim - \l_@@_submatrix_left_xshift_dim }
9164 { (\l_@@_y_initial_dim + \l_@@_y_final_dim) / 2 }
9165 }
9166 \str_if_empty:NTF \l_@@_submatrix_name_str
9167 { \@@_node_left:nn #1 { } }
9168 { \@@_node_left:nn #1 { \@@_env: - \l_@@_submatrix_name_str - left } }
9169 \end { pgfscope }

Now, we deal with the right delimiter.
9170 \pgftransformshift
9171 {
9172 \pgfpoint
9173 { \l_@@_x_final_dim + \l_@@_submatrix_right_xshift_dim }
9174 { (\l_@@_y_initial_dim + \l_@@_y_final_dim) / 2 }
9175 }
9176 \str_if_empty:NTF \l_@@_submatrix_name_str
9177 { \@@_node_right:nnnn #2 { } { #3 } { #4 } }
9178 {
9179 \@@_node_right:nnnn #2
9180 { \@@_env: - \l_@@_submatrix_name_str - right } { #3 } { #4 }
9181 }

Now, we deal with the key code of \SubMatrix. That key should contain a TikZ instruction and
the nodes in that instruction will be relative to the current \SubMatrix. That’s why we need a
redefinition of \pgfpointanchor.

9182 \cs_set_eq:NN \pgfpointanchor \@@_pgfpointanchor:n
9183 \flag_clear_new:N \l_@@_code_flag
9184 \l_@@_code_tl
9185 }

In the key code of the command \SubMatrix there may be TikZ instructions. We want that, in these
instructions, the i and j in specifications of nodes of the forms i-j, row-i, col-j and i-|j refer to
the number of row and column relative of the current \SubMatrix. That’s why we will patch (locally
in the \SubMatrix) the command \pgfpointanchor.

9186 \cs_set_eq:NN \@@_old_pgfpointanchor: \pgfpointanchor

211

The following command will be linked to \pgfpointanchor just before the execution of the option
code of the command \SubMatrix. In this command, we catch the argument #1 of \pgfpointanchor
and we apply to it the command \@@_pgfpointanchor_i:nn before passing it to the original
\pgfpointanchor. We have to act in an expandable way because the command \pgfpointanchor is
used in names of Tikz nodes which are computed in an expandable way.
The original command \pgfpointanchor takes in two arguments: the name of the name and the name
of the anchor. However, you don’t have to modify the anchor, and that’s why we do a redefinition of
\pgfpointanchor by curryfication.

9187 \cs_new:Npn \@@_pgfpointanchor:n #1
9188 { \exp_args:Ne \@@_old_pgfpointanchor: { \@@_pgfpointanchor_i:n { #1 } } }

First, we must detect whether the argument is of the form \tikz@pp@name{...} (the command
\tikz@pp@name is a command of TikZ that adds the prefix and the suffix of the name. If the name
refers to a TikZ node which does not exist, there isn’t the wrapper \tikz@pp@name.

9189 \cs_new:Npn \@@_pgfpointanchor_i:n #1
9190 { \@@_pgfpointanchor_ii:w #1 \tikz@pp@name \q_stop }

9191 \cs_new:Npn \@@_pgfpointanchor_ii:w #1 \tikz@pp@name #2 \q_stop
9192 {

The command \str_if_empty:nTF is “fully expandable”.
9193 \str_if_empty:nTF { #1 }

First, when the name of the name begins with \tikz@pp@name.
9194 { \@@_pgfpointanchor_iv:w #2 }

And now, when there is no \tikz@pp@name.
9195 { \@@_pgfpointanchor_ii:n { #1 } }
9196 }

In the case where the name begins with \tikz@pp@name, we must retrieve the second \tikz@pp@name,
that is to say to marker that we have added at the end (cf. \@@_pgfpointanchor_i:n).

9197 \cs_new:Npn \@@_pgfpointanchor_iv:w #1 \tikz@pp@name
9198 { \@@_pgfpointanchor_ii:n { #1 } }

With the command \@@_pgfpointanchor_ii:n, we deal with the actual name of the node (without
the \tikz@pp@name). First, we have to detect whether it is of the form i of the form i-j (with an
hyphen).
Remark: It would be possible to test the presence of the hyphen in an expandable way to using
\etl_if_in:nnTF of the package etl but, as of now, we do not load etl.

9199 \cs_new:Npn \@@_pgfpointanchor_ii:n #1 { \@@_pgfpointanchor_i:w #1- \q_stop }

9200 \cs_new:Npn \@@_pgfpointanchor_i:w #1-#2 \q_stop
9201 {

The command \str_if_empty:nTF is “fully expandable”.
9202 \str_if_empty:nTF { #2 }

First the case where the argument does not contain an hyphen.
9203 { \@@_pgfpointanchor_iii:n { #1 } }

And now the case the argument contains a hyphen. In that case, we have a weird construction because
we must retreive the extra hyphen we have added as marker (cf. \@@_pgfpointanchor_ii:n).

9204 { \@@_pgfpointanchor_iii:w { #1 } #2 }
9205 }

The following function is for the case when the name contains an hyphen.
9206 \cs_new:Npn \@@_pgfpointanchor_iii:w #1 #2 -
9207 {

We have to add the prefix \@@_env: “by hand” since we have retreived the potential \tikz@pp@name.
9208 \@@_env:
9209 - \int_eval:n { #1 + \l_@@_first_i_tl - 1 }
9210 - \int_eval:n { #2 + \l_@@_first_j_tl - 1 }
9211 }

212

Since \seq_if_in:NnTF and \clist_if_in:NnTF are not expandable, we will use the following token
list and \str_case:nVTF to test whether we have an integer or not.

9212 \tl_const:Nn \c_@@_integers_alist_tl
9213 {
9214 { 1 } { } { 2 } { } { 3 } { } { 4 } { } { 5 } { }
9215 { 6 } { } { 7 } { } { 8 } { } { 9 } { } { 10 } { }
9216 { 11 } { } { 12 } { } { 13 } { } { 14 } { } { 15 } { }
9217 { 16 } { } { 17 } { } { 18 } { } { 19 } { } { 20 } { }
9218 }

9219 \cs_new:Npn \@@_pgfpointanchor_iii:n #1
9220 {

If there is no hyphen, that means that the node is of the form of a single number (ex.: 5 or 11).
In that case, we are in an analysis which result from a specification of node of the form i-|j. That
special form is the reason of the special form of the argument of \pgfpointanchor which arises witht
its command \name_of_command (see above).
In that case, the i of the number of row arrives first (and alone) in a \pgfpointanchor and, the, the
j arrives (alone) in the following \pgfpointanchor. In order to know whether we have a number of
row or a number of column, we keep track of the number of such treatments by the expandable flag
called nicematrix.

9221 \str_case:nVTF { #1 } \c_@@_integers_alist_tl
9222 {
9223 \flag_raise:N \l_@@_code_flag

We have to add the prefix \@@_env: “by hand” since we have retreived the potential \tikz@pp@name.
9224 \@@_env: -
9225 \int_if_even:nTF { \flag_height:N \l_@@_code_flag }
9226 { \int_eval:n { #1 + \l_@@_first_i_tl - 1 } }
9227 { \int_eval:n { #1 + \l_@@_first_j_tl - 1 } }
9228 }
9229 {
9230 \str_if_eq:eeTF { #1 } { last }
9231 {
9232 \flag_raise:N \l_@@_code_flag
9233 \@@_env: -
9234 \int_if_even:nTF { \flag_height:N \l_@@_code_flag }
9235 { \int_eval:n { \l_@@_last_i_tl + 1 } }
9236 { \int_eval:n { \l_@@_last_j_tl + 1 } }
9237 }
9238 { #1 }
9239 }
9240 }

The command \@@_node_left:nn puts the left delimiter with the correct size. The argument #1 is
the delimiter to put. The argument #2 is the name we will give to this PGF node (if the key name
has been used in \SubMatrix).

9241 \cs_new_protected:Npn \@@_node_left:nn #1 #2
9242 {
9243 \pgfnode
9244 { rectangle }
9245 { east }
9246 {
9247 \nullfont
9248 $ % $
9249 \@@_color:o \l_@@_delimiters_color_tl
9250 \left #1
9251 \vcenter
9252 {
9253 \nullfont
9254 \hrule \@height \l_tmpa_dim
9255 \@depth \c_zero_dim

213

9256 \@width \c_zero_dim
9257 }
9258 \right .
9259 $ % $
9260 }
9261 { #2 }
9262 { }
9263 }

The command \@@_node_right:nn puts the right delimiter with the correct size. The argument #1
is the delimiter to put. The argument #2 is the name we will give to this PGF node (if the key name
has been used in \SubMatrix). The argument #3 is the subscript and #4 is the superscript.

9264 \cs_new_protected:Npn \@@_node_right:nnnn #1 #2 #3 #4
9265 {
9266 \pgfnode
9267 { rectangle }
9268 { west }
9269 {
9270 \nullfont
9271 $ % $
9272 \colorlet { current-color } { . }
9273 \@@_color:o \l_@@_delimiters_color_tl
9274 \left .
9275 \vcenter
9276 {
9277 \nullfont
9278 \hrule \@height \l_tmpa_dim
9279 \@depth \c_zero_dim
9280 \@width \c_zero_dim
9281 }
9282 \right #1
9283 \tl_if_empty:nF { #3 } { _ { \smash { #3 } } }
9284 ^ { \color { current-color } \smash { #4 } }
9285 $ % $
9286 }
9287 { #2 }
9288 { }
9289 }

34 Les commandes \UnderBrace et \OverBrace

The following commands will be linked to \UnderBrace and \OverBrace in the \CodeAfter.
9290 \NewDocumentCommand \@@_UnderBrace { O { } m m m O { } }
9291 {
9292 \@@_brace:nnnnn { #2 } { #3 } { #4 } { #1 , #5 } { under }
9293 \ignorespaces
9294 }

9295 \NewDocumentCommand \@@_OverBrace { O { } m m m O { } }
9296 {
9297 \@@_brace:nnnnn { #2 } { #3 } { #4 } { #1 , #5 } { over }
9298 \ignorespaces
9299 }

9300 \keys_define:nn { nicematrix / Brace }
9301 {
9302 left-shorten .bool_set:N = \l_@@_brace_left_shorten_bool ,
9303 left-shorten .default:n = true ,
9304 left-shorten .value_forbidden:n = true ,

214

9305 right-shorten .bool_set:N = \l_@@_brace_right_shorten_bool ,
9306 right-shorten .default:n = true ,
9307 right-shorten .value_forbidden:n = true ,
9308 shorten .meta:n = { left-shorten , right-shorten } ,
9309 shorten .value_forbidden:n = true ,
9310 yshift .dim_set:N = \l_@@_brace_yshift_dim ,
9311 yshift .value_required:n = true ,
9312 yshift .initial:n = \c_zero_dim ,
9313 color .tl_set:N = \l_tmpa_tl ,
9314 color .value_required:n = true ,
9315 unknown .code:n =
9316 \@@_unknown_key:nn
9317 { nicematrix / Brace }
9318 { Unknown~key~for~Brace }
9319 }

#1 is the first cell of the rectangle (with the syntax i-|j; #2 is the last cell of the rectangle; #3 is the
label of the text; #4 is the optional argument (a list of key-value pairs); #5 is equal to under or over.

9320 \cs_new_protected:Npn \@@_brace:nnnnn #1 #2 #3 #4 #5
9321 {
9322 \group_begin:

The four following token lists correspond to the position of the sub-matrix to which a brace will be
attached.

9323 \@@_compute_i_j:nn { #1 } { #2 }
9324 \bool_lazy_or:nnTF
9325 { \int_compare_p:nNn { \l_@@_last_i_tl } > { \g_@@_row_total_int } }
9326 { \int_compare_p:nNn { \l_@@_last_j_tl } > { \g_@@_col_total_int } }
9327 {
9328 \str_if_eq:eeTF { #5 } { under }
9329 { \@@_error:nn { Construct~too~large } { \UnderBrace } }
9330 { \@@_error:nn { Construct~too~large } { \OverBrace } }
9331 }
9332 {
9333 \tl_clear:N \l_tmpa_tl
9334 \keys_set:nn { nicematrix / Brace } { #4 }
9335 \tl_if_empty:NF \l_tmpa_tl { \color { \l_tmpa_tl } }
9336 \pgfpicture
9337 \pgfrememberpicturepositiononpagetrue
9338 \pgf@relevantforpicturesizefalse
9339 \bool_if:NT \l_@@_brace_left_shorten_bool
9340 {
9341 \dim_set_eq:NN \l_@@_x_initial_dim \c_max_dim
9342 \int_step_inline:nnn { \l_@@_first_i_tl } { \l_@@_last_i_tl }
9343 {
9344 \cs_if_exist:cT
9345 { pgf @ sh @ ns @ \@@_env: - ##1 - \l_@@_first_j_tl }
9346 {
9347 \pgfpointanchor { \@@_env: - ##1 - \l_@@_first_j_tl } { west }
9348

9349 \dim_compare:nNnT { \pgf@x } < { \l_@@_x_initial_dim }
9350 { \dim_set_eq:NN \l_@@_x_initial_dim \pgf@x }
9351 }
9352 }
9353 }
9354 \bool_lazy_or:nnT
9355 { \bool_not_p:n \l_@@_brace_left_shorten_bool }
9356 { \dim_compare_p:nNn { \l_@@_x_initial_dim } = { \c_max_dim } }
9357 {
9358 \@@_qpoint:n { col - \l_@@_first_j_tl }
9359 \dim_set_eq:NN \l_@@_x_initial_dim \pgf@x
9360 }
9361 \bool_if:NT \l_@@_brace_right_shorten_bool
9362 {

215

9363 \dim_set:Nn \l_@@_x_final_dim { - \c_max_dim }
9364 \int_step_inline:nnn { \l_@@_first_i_tl } { \l_@@_last_i_tl }
9365 {
9366 \cs_if_exist:cT
9367 { pgf @ sh @ ns @ \@@_env: - ##1 - \l_@@_last_j_tl }
9368 {
9369 \pgfpointanchor { \@@_env: - ##1 - \l_@@_last_j_tl } { east }
9370 \dim_compare:nNnT { \pgf@x } > { \l_@@_x_final_dim }
9371 { \dim_set_eq:NN \l_@@_x_final_dim \pgf@x }
9372 }
9373 }
9374 }
9375 \bool_lazy_or:nnT
9376 { \bool_not_p:n \l_@@_brace_right_shorten_bool }
9377 { \dim_compare_p:nNn { \l_@@_x_final_dim } = { - \c_max_dim } }
9378 {
9379 \@@_qpoint:n { col - \int_eval:n { \l_@@_last_j_tl + 1 } }
9380 \dim_set_eq:NN \l_@@_x_final_dim \pgf@x
9381 }
9382 \pgfset { inner~sep = \c_zero_dim }
9383 \str_if_eq:eeTF { #5 } { under }
9384 { \@@_underbrace_i:n { #3 } }
9385 { \@@_overbrace_i:n { #3 } }
9386 \endpgfpicture
9387 }
9388 \group_end:
9389 }

The argument is the text to put above the brace.
9390 \cs_new_protected:Npn \@@_overbrace_i:n #1
9391 {
9392 \@@_qpoint:n { row - \l_@@_first_i_tl }
9393 \pgftransformshift
9394 {
9395 \pgfpoint
9396 { (\l_@@_x_initial_dim + \l_@@_x_final_dim) / 2 }
9397 { \pgf@y + \l_@@_brace_yshift_dim - 3 pt }
9398 }
9399 \pgfnode
9400 { rectangle }
9401 { south }
9402 {
9403 \vtop
9404 {
9405 \group_begin:
9406 \everycr { }
9407 \halign
9408 {
9409 \hfil ## \hfil \crcr
9410 \bool_if:NTF \l_@@_tabular_bool
9411 { \begin { tabular } { c } #1 \end { tabular } }
9412 { $ \begin { array } { c } #1 \end { array } $ }
9413 \cr
9414 $ % $
9415 \overbrace
9416 {
9417 \hbox_to_wd:nn
9418 { \l_@@_x_final_dim - \l_@@_x_initial_dim }
9419 { }
9420 }
9421 $ % $
9422 \cr
9423 }
9424 \group_end:

216

9425 }
9426 }
9427 { }
9428 { }
9429 }

The argument is the text to put under the brace.
9430 \cs_new_protected:Npn \@@_underbrace_i:n #1
9431 {
9432 \@@_qpoint:n { row - \int_eval:n { \l_@@_last_i_tl + 1 } }
9433 \pgftransformshift
9434 {
9435 \pgfpoint
9436 { (\l_@@_x_initial_dim + \l_@@_x_final_dim) / 2 }
9437 { \pgf@y - \l_@@_brace_yshift_dim + 3 pt }
9438 }
9439 \pgfnode
9440 { rectangle }
9441 { north }
9442 {
9443 \group_begin:
9444 \everycr { }
9445 \vbox
9446 {
9447 \halign
9448 {
9449 \hfil ## \hfil \crcr
9450 $ % $
9451 \underbrace
9452 {
9453 \hbox_to_wd:nn
9454 { \l_@@_x_final_dim - \l_@@_x_initial_dim }
9455 { }
9456 }
9457 $ % $
9458 \cr
9459 \bool_if:NTF \l_@@_tabular_bool
9460 { \begin { tabular } { c } #1 \end { tabular } }
9461 { $ \begin { array } { c } #1 \end { array } $ }
9462 \cr
9463 }
9464 }
9465 \group_end:
9466 }
9467 { }
9468 { }
9469 }

35 The commands HBrace et VBrace

The TikZ style nicematrix/brace is a TikZ style used to draw the braces created by \Hbrace and
\Vbrace.
We can’t load that definition right away because of course, maybe the final user has not yet
loaded TikZ (\Hbrace and \Vbrace are available only when TikZ is loaded and also its library
decorations.pathreplacing).

9470 \AddToHook { package / tikz / after }
9471 {

217

9472 \tikzset
9473 {
9474 nicematrix / brace / .style =
9475 {
9476 decoration = { brace , raise = -0.15 em } ,
9477 decorate ,
9478 } ,

Unlike the previous one, the following set of keys is internal. It won’t be provided by the final user.
9479 nicematrix / mirrored-brace / .style =
9480 {
9481 nicematrix / brace ,
9482 decoration = mirror ,
9483 }
9484 }
9485 }

The following set of keys will be used only for security since the keys will be sent to the command
\Ldots or \Vdots.

9486 \keys_define:nn { nicematrix / Hbrace }
9487 {
9488 color .code:n = ,
9489 horizontal-label .code:n = ,
9490 horizontal-labels .code:n = ,
9491 shorten .code:n = ,
9492 shorten-start .code:n = ,
9493 shorten-end .code:n = ,
9494 brace-shift .code:n = ,
9495 unknown .code:n = \@@_fatal:n { Unknown~key~for~Hbrace }
9496 }

Here we need an “fully expandable” command.
9497 \NewExpandableDocumentCommand { \@@_Hbrace } { O { } m m }
9498 {
9499 \cs_if_exist:cTF { tikz@library@decorations.pathreplacing@loaded }
9500 { \@@_hbrace:nnn { #1 } { #2 } { #3 } }
9501 { \@@_error:nn { Hbrace~not~allowed } { \Hbrace } }
9502 }

The following command must not be protected because of the \Hdotsfor which contains a
\multicolumn (whereas the similar command \@@_vbrace:nnn must be protected).

9503 \cs_new:Npn \@@_hbrace:nnn #1 #2 #3
9504 {
9505 \int_compare:nNnTF { \c@iRow } < { 2 }
9506 {

We recall that \str_if_eq:nnTF is “fully expandable”.
9507 \str_if_eq:nnTF { #2 } { * }
9508 {
9509 \bool_set_true:N \l_@@_nullify_dots_bool
9510 \Ldots
9511 [
9512 line-style = nicematrix / brace ,
9513 #1 ,
9514 up =
9515 \bool_if:NT \l_@@_tabular_bool \text { \exp_not:n { #3 } }
9516]
9517 }
9518 {
9519 \Hdotsfor
9520 [
9521 line-style = nicematrix / brace ,

218

9522 #1 ,
9523 up =
9524 \bool_if:NT \l_@@_tabular_bool \text { \exp_not:n { #3 } }
9525]
9526 { #2 }
9527 }
9528 }
9529 {
9530 \str_if_eq:nnTF { #2 } { * }
9531 {
9532 \bool_set_true:N \l_@@_nullify_dots_bool
9533 \Ldots
9534 [
9535 line-style = nicematrix / mirrored-brace ,
9536 #1 ,
9537 down =
9538 \bool_if:NT \l_@@_tabular_bool \text { \exp_not:n { #3 } }
9539]
9540 }
9541 {
9542 \Hdotsfor
9543 [
9544 line-style = nicematrix / mirrored-brace ,
9545 #1 ,
9546 down =
9547 \bool_if:NT \l_@@_tabular_bool \text { \exp_not:n { #3 } }
9548]
9549 { #2 }
9550 }
9551 }
9552 \keys_set:nn { nicematrix / Hbrace } { #1 }
9553 }

9554 \NewDocumentCommand { \@@_Vbrace } { O { } m m }
9555 {
9556 \cs_if_exist:cTF { tikz@library@decorations.pathreplacing@loaded }
9557 { \@@_vbrace:nnn { #1 } { #2 } { #3 } }
9558 { \@@_error:nn { Hbrace~not~allowed } { \Vbrace } }
9559 }

The following command must be protected (whereas the similar command \@@_hbrace:nnn must
not.

9560 \cs_new_protected:Npn \@@_vbrace:nnn #1 #2 #3
9561 {
9562 \int_compare:nNnTF { \c@jCol } < { 2 }
9563 {
9564 \str_if_eq:nnTF { #2 } { * }
9565 {
9566 \bool_set_true:N \l_@@_nullify_dots_bool
9567 \Vdots
9568 [
9569 Vbrace ,
9570 line-style = nicematrix / mirrored-brace ,
9571 #1 ,
9572 down =
9573 \bool_if:NT \l_@@_tabular_bool \text { \exp_not:n { #3 } }
9574]
9575 }
9576 {
9577 \Vdotsfor
9578 [
9579 Vbrace ,
9580 line-style = nicematrix / mirrored-brace ,

219

9581 #1 ,
9582 down =
9583 \bool_if:NT \l_@@_tabular_bool \text { \exp_not:n { #3 } }
9584]
9585 { #2 }
9586 }
9587 }
9588 {
9589 \str_if_eq:nnTF { #2 } { * }
9590 {
9591 \bool_set_true:N \l_@@_nullify_dots_bool
9592 \Vdots
9593 [
9594 Vbrace ,
9595 line-style = nicematrix / brace ,
9596 #1 ,
9597 up =
9598 \bool_if:NT \l_@@_tabular_bool \text { \exp_not:n { #3 } }
9599]
9600 }
9601 {
9602 \Vdotsfor
9603 [
9604 Vbrace ,
9605 line-style = nicematrix / brace ,
9606 #1 ,
9607 up =
9608 \bool_if:NT \l_@@_tabular_bool \text { \exp_not:n { #3 } }
9609]
9610 { #2 }
9611 }
9612 }
9613 \keys_set:nn { nicematrix / Hbrace } { #1 }
9614 }

36 The command TikzEveryCell

9615 \bool_new:N \l_@@_not_empty_bool
9616 \bool_new:N \l_@@_empty_bool
9617

9618 \keys_define:nn { nicematrix / TikzEveryCell }
9619 {
9620 not-empty .code:n =
9621 \bool_lazy_or:nnTF
9622 { \l_@@_in_code_after_bool }
9623 { \g_@@_create_cell_nodes_bool }
9624 { \bool_set_true:N \l_@@_not_empty_bool }
9625 { \@@_error:n { detection~of~empty~cells } } ,
9626 not-empty .value_forbidden:n = true ,
9627 empty .code:n =
9628 \bool_lazy_or:nnTF
9629 { \l_@@_in_code_after_bool }
9630 { \g_@@_create_cell_nodes_bool }
9631 { \bool_set_true:N \l_@@_empty_bool }
9632 { \@@_error:n { detection~of~empty~cells } } ,
9633 empty .value_forbidden:n = true ,
9634 unknown .code:n = \@@_error:n { Unknown~key~for~TikzEveryCell }
9635 }
9636

220

9637

9638 \NewDocumentCommand { \@@_TikzEveryCell } { O { } m }
9639 {
9640 \IfPackageLoadedTF { tikz }
9641 {
9642 \group_begin:
9643 \keys_set:nn { nicematrix / TikzEveryCell } { #1 }

The inner pair of braces in the following line is mandatory because, the last argument of
\@@_tikz:nnnnn is a list of lists of TikZ keys.

9644 \tl_set:Nn \l_tmpa_tl { { #2 } }
9645 \seq_map_inline:Nn \g_@@_pos_of_blocks_seq
9646 { \@@_for_a_block:nnnnn ##1 }
9647 \@@_all_the_cells:
9648 \group_end:
9649 }
9650 { \@@_error:n { TikzEveryCell~without~tikz } }
9651 }
9652

9653

9654 \cs_new_protected:Nn \@@_all_the_cells:
9655 {
9656 \int_step_inline:nn \c@iRow
9657 {
9658 \int_step_inline:nn \c@jCol
9659 {
9660 \cs_if_exist:cF { cell - ##1 - ####1 }
9661 {
9662 \clist_if_in:NeF \l_@@_corners_cells_clist
9663 { ##1 - ####1 }
9664 {
9665 \bool_set_false:N \l_tmpa_bool
9666 \cs_if_exist:cTF
9667 { pgf @ sh @ ns @ \@@_env: - ##1 - ####1 }
9668 {
9669 \bool_if:NF \l_@@_empty_bool
9670 { \bool_set_true:N \l_tmpa_bool }
9671 }
9672 {
9673 \bool_if:NF \l_@@_not_empty_bool
9674 { \bool_set_true:N \l_tmpa_bool }
9675 }
9676 \bool_if:NT \l_tmpa_bool
9677 {
9678 \@@_block_tikz:onnnn
9679 \l_tmpa_tl { ##1 } { ####1 } { ##1 } { ####1 }
9680 }
9681 }
9682 }
9683 }
9684 }
9685 }
9686

9687 \cs_new_protected:Nn \@@_for_a_block:nnnnn
9688 {
9689 \bool_if:NF \l_@@_empty_bool
9690 {
9691 \@@_block_tikz:onnnn
9692 \l_tmpa_tl { #1 } { #2 } { #3 } { #4 }
9693 }
9694 \@@_mark_cells_of_block:nnnn { #1 } { #2 } { #3 } { #4 }
9695 }
9696

9697 \cs_new_protected:Nn \@@_mark_cells_of_block:nnnn

221

9698 {
9699 \int_step_inline:nnn { #1 } { #3 }
9700 {
9701 \int_step_inline:nnn { #2 } { #4 }
9702 { \cs_set_nopar:cpn { cell - ##1 - ####1 } { } }
9703 }
9704 }

37 The command \ShowCellNames

9705 \NewDocumentCommand \@@_ShowCellNames { }
9706 {
9707 \bool_if:NT \l_@@_in_code_after_bool
9708 {
9709 \pgfpicture
9710 \pgfrememberpicturepositiononpagetrue
9711 \pgf@relevantforpicturesizefalse
9712 \pgfpathrectanglecorners
9713 { \@@_qpoint:n { 1 } }
9714 {
9715 \@@_qpoint:n
9716 { \int_eval:n { \int_max:nn { \c@iRow } { \c@jCol } + 1 } }
9717 }
9718 \pgfsetfillopacity { 0.75 }
9719 \pgfsetfillcolor { white }
9720 \pgfusepathqfill
9721 \endpgfpicture
9722 }
9723 \dim_gzero_new:N \g_@@_tmpc_dim
9724 \dim_gzero_new:N \g_@@_tmpd_dim
9725 \dim_gzero_new:N \g_@@_tmpe_dim
9726 \int_step_inline:nn { \c@iRow }
9727 {
9728 \bool_if:NTF \l_@@_in_code_after_bool
9729 {
9730 \pgfpicture
9731 \pgfrememberpicturepositiononpagetrue
9732 \pgf@relevantforpicturesizefalse
9733 }
9734 { \begin { pgfpicture } }
9735 \@@_qpoint:n { row - ##1 }
9736 \dim_set_eq:NN \l_tmpa_dim \pgf@y
9737 \@@_qpoint:n { row - \int_eval:n { ##1 + 1 } }
9738 \dim_gset:Nn \g_tmpa_dim { (\l_tmpa_dim + \pgf@y) / 2 }
9739 \dim_gset:Nn \g_tmpb_dim { \l_tmpa_dim - \pgf@y }
9740 \bool_if:NTF \l_@@_in_code_after_bool
9741 { \endpgfpicture }
9742 { \end { pgfpicture } }
9743 \int_step_inline:nn { \c@jCol }
9744 {
9745 \hbox_set:Nn \l_tmpa_box
9746 {
9747 \normalfont \Large \sffamily \bfseries
9748 \bool_if:NTF \l_@@_in_code_after_bool
9749 { \color { red } }
9750 { \color { red ! 50 } }
9751 ##1 - ####1
9752 }
9753 \bool_if:NTF \l_@@_in_code_after_bool
9754 {
9755 \pgfpicture
9756 \pgfrememberpicturepositiononpagetrue

222

9757 \pgf@relevantforpicturesizefalse
9758 }
9759 { \begin { pgfpicture } }
9760 \@@_qpoint:n { col - ####1 }
9761 \dim_gset_eq:NN \g_@@_tmpc_dim \pgf@x
9762 \@@_qpoint:n { col - \int_eval:n { ####1 + 1 } }
9763 \dim_gset:Nn \g_@@_tmpd_dim { \pgf@x - \g_@@_tmpc_dim }
9764 \dim_gset_eq:NN \g_@@_tmpe_dim \pgf@x
9765 \bool_if:NTF \l_@@_in_code_after_bool
9766 { \endpgfpicture }
9767 { \end { pgfpicture } }
9768 \fp_set:Nn \l_tmpa_fp
9769 {
9770 \fp_min:nn
9771 {
9772 \fp_min:nn
9773 { \dim_ratio:nn \g_@@_tmpd_dim { \box_wd:N \l_tmpa_box } }
9774 { \dim_ratio:nn \g_tmpb_dim { \box_ht_plus_dp:N \l_tmpa_box } }
9775 }
9776 { 1.0 }
9777 }
9778 \box_scale:Nnn \l_tmpa_box { \fp_use:N \l_tmpa_fp } { \fp_use:N \l_tmpa_fp }
9779 \pgfpicture
9780 \pgfrememberpicturepositiononpagetrue
9781 \pgf@relevantforpicturesizefalse
9782 \pgftransformshift
9783 {
9784 \pgfpoint
9785 { 0.5 * (\g_@@_tmpc_dim + \g_@@_tmpe_dim) }
9786 { \dim_use:N \g_tmpa_dim }
9787 }
9788 \pgfnode
9789 { rectangle }
9790 { center }
9791 { \box_use:N \l_tmpa_box }
9792 { }
9793 { }
9794 \endpgfpicture
9795 }
9796 }
9797 }

38 We process the options at package loading

We process the options when the package is loaded (with \usepackage) but we recommend to use
\NiceMatrixOptions instead.
We must process these options after the definition of the environment {NiceMatrix} because the
option renew-matrix executes the code \cs_set_eq:NN \env@matrix \NiceMatrix.
Of course, the command \NiceMatrix must be defined before such an instruction is executed.

The boolean \g_@@_footnotehyper_bool will indicate if the option footnotehyper is used.
9798 \bool_new:N \g_@@_footnotehyper_bool

The boolean \g_@@_footnote_bool will indicate if the option footnote is used, but quickly, it will
also be set to true if the option footnotehyper is used.

9799 \bool_new:N \g_@@_footnote_bool

9800 \msg_new:nnnn { nicematrix } { Unknown~key~for~package }
9801 {
9802 You~have~used~the~key~' \l_keys_key_str '~when~loading~nicematrix~
9803 but~that~key~is~unknown. \\
9804 It~will~be~ignored. \\

223

9805 For~a~list~of~the~available~keys,~type~H~<return>.
9806 }
9807 {
9808 The~available~keys~are~(in~alphabetic~order):~
9809 footnote,~
9810 footnotehyper,~
9811 messages-for-Overleaf,~
9812 renew-dots~and~
9813 renew-matrix.
9814 }

9815 \keys_define:nn { nicematrix }
9816 {
9817 renew-dots .bool_set:N = \l_@@_renew_dots_bool ,
9818 renew-dots .value_forbidden:n = true ,
9819 renew-matrix .code:n = \@@_renew_matrix: ,
9820 renew-matrix .value_forbidden:n = true ,
9821 messages-for-Overleaf .bool_set:N = \g_@@_messages_for_Overleaf_bool ,
9822 footnote .bool_set:N = \g_@@_footnote_bool ,
9823 footnotehyper .bool_set:N = \g_@@_footnotehyper_bool ,
9824 unknown .code:n = \@@_error:n { Unknown~key~for~package }
9825 }
9826 \ProcessKeyOptions

9827 \@@_msg_new:nn { footnote~with~footnotehyper~package }
9828 {
9829 You~can't~use~the~option~'footnote'~because~the~package~
9830 footnotehyper~has~already~been~loaded.~
9831 If~you~want,~you~can~use~the~option~'footnotehyper'~and~the~footnotes~
9832 within~the~environments~of~nicematrix~will~be~extracted~with~the~tools~
9833 of~the~package~footnotehyper.\\
9834 The~package~footnote~won't~be~loaded.
9835 }

9836 \@@_msg_new:nn { footnotehyper~with~footnote~package }
9837 {
9838 You~can't~use~the~option~'footnotehyper'~because~the~package~
9839 footnote~has~already~been~loaded.~
9840 If~you~want,~you~can~use~the~option~'footnote'~and~the~footnotes~
9841 within~the~environments~of~nicematrix~will~be~extracted~with~the~tools~
9842 of~the~package~footnote.\\
9843 The~package~footnotehyper~won't~be~loaded.
9844 }

9845 \bool_if:NT \g_@@_footnote_bool
9846 {

The class beamer has its own system to extract footnotes and that’s why we have nothing to do if
beamer is used.

9847 \IfClassLoadedTF { beamer }
9848 { \bool_set_false:N \g_@@_footnote_bool }
9849 {
9850 \IfPackageLoadedTF { footnotehyper }
9851 { \@@_error:n { footnote~with~footnotehyper~package } }
9852 { \usepackage { footnote } }
9853 }
9854 }

9855 \bool_if:NT \g_@@_footnotehyper_bool
9856 {

The class beamer has its own system to extract footnotes and that’s why we have nothing to do if
beamer is used.

9857 \IfClassLoadedTF { beamer }

224

9858 { \bool_set_false:N \g_@@_footnote_bool }
9859 {
9860 \IfPackageLoadedTF { footnote }
9861 { \@@_error:n { footnotehyper~with~footnote~package } }
9862 { \usepackage { footnotehyper } }
9863 }
9864 \bool_set_true:N \g_@@_footnote_bool
9865 }

The flag \g_@@_footnote_bool is raised and so, we will only have to test \g_@@_footnote_bool in
order to know if we have to insert an environment {savenotes}.

39 About the package underscore

If the user loads the package underscore, it must be loaded before the package nicematrix. If it is
loaded after, we raise an error.

9866 \bool_new:N \l_@@_underscore_loaded_bool
9867 \IfPackageLoadedT { underscore }
9868 { \bool_set_true:N \l_@@_underscore_loaded_bool }

9869 \hook_gput_code:nnn { begindocument } { . }
9870 {
9871 \bool_if:NF \l_@@_underscore_loaded_bool
9872 {
9873 \IfPackageLoadedT { underscore }
9874 { \@@_error:n { underscore~after~nicematrix } }
9875 }
9876 }

40 Error messages of the package

When there is a unknown key, we try a “normal form” of the key and, when that normal form exists,
we add that information in the error message.
The normal form is the lower case form of the key, with all the spaces replaced by hyphens (there is
never spaces in the keys of nicematrix).
#1 is a clist of names of sets of keys and #2 is the error message to send.

9877 \cs_new_protected:Npn \@@_unknown_key:nn #1 #2
9878 {
9879 \str_set_eq:NN \l_tmpa_str \l_keys_key_str
9880 \str_replace_all:Nnn \l_tmpa_str { ~ } { - }
9881 \str_set:Ne \l_tmpa_str { \str_lowercase:f { \l_tmpa_str } }
9882 \bool_set_false:N \l_tmpa_bool
9883 \clist_map_inline:nn { #1 }
9884 {
9885 \keys_if_exist:neT { ##1 } { \l_tmpa_str }
9886 {
9887 \@@_error:n { key~with~normal~form~exists }
9888 \bool_set_true:N \l_tmpa_bool
9889 \clist_map_break:
9890 }
9891 }
9892 \bool_if:NF \l_tmpa_bool { \@@_error:n { #2 } }
9893 }

225

9894 \@@_msg_new:nn { key~with~normal~form~exists }
9895 {
9896 The~key~'\l_keys_key_str'~does~not~exists.\\
9897 It~will~be~ignored.\\
9898 Maybe~you~want~to~use~the~key~'\l_tmpa_str'.
9899 }

9900 \str_const:Ne \c_@@_available_keys_str
9901 {
9902 \bool_if:nT { ! \g_@@_messages_for_Overleaf_bool }
9903 { For~a~list~of~the~available~keys,~type~H~<return>. }
9904 }

9905 \seq_new:N \g_@@_types_of_matrix_seq
9906 \seq_gset_from_clist:Nn \g_@@_types_of_matrix_seq
9907 {
9908 NiceMatrix ,
9909 pNiceMatrix , bNiceMatrix , vNiceMatrix, BNiceMatrix, VNiceMatrix
9910 }
9911 \seq_gset_map_e:NNn \g_@@_types_of_matrix_seq \g_@@_types_of_matrix_seq
9912 { \tl_to_str:n { #1 } }

If the user uses too much columns, the command \@@_err_too_many_cols: is triggered. This com-
mand raises an error but also tries to give the best information to the user in the error message. The
command \seq_if_in:NoF is not expandable and that’s why we can’t put it in the error message
itself. We have to do the test before the \@@_fatal:n.

9913 \cs_new_protected:Npn \@@_err_too_many_cols:
9914 {
9915 \seq_if_in:NoF \g_@@_types_of_matrix_seq \g_@@_name_env_str
9916 { \@@_fatal:nn { too~many~cols~for~array } }
9917 \int_compare:nNnT { \l_@@_last_col_int } = { -2 }
9918 { \@@_fatal:n { too~many~cols~for~matrix } }
9919 \int_compare:nNnT { \l_@@_last_col_int } = { -1 }
9920 { \@@_fatal:n { too~many~cols~for~matrix } }
9921 \bool_if:NF \l_@@_last_col_without_value_bool
9922 { \@@_fatal:n { too~many~cols~for~matrix~with~last~col } }
9923 }

The following command must not be protected since it’s used in an error message.
9924 \cs_new:Npn \@@_message_hdotsfor:
9925 {
9926 \tl_if_empty:oF \g_@@_HVdotsfor_lines_tl
9927 { ~Maybe~your~use~of~ \token_to_str:N \Hdotsfor \ or~
9928 \token_to_str:N \Hbrace \ is~incorrect. }
9929 }

9930 \cs_new_protected:Npn \@@_Hline_in_cell:
9931 { \@@_fatal:n { Misuse~of~Hline } }

9932 \@@_msg_new:nn { Misuse~of~Hline }
9933 {
9934 Misuse~of~Hline. \\
9935 Error~in~your~row~ \int_eval:n { \c@iRow }. \\
9936 \token_to_str:N \Hline\ must~be~used~only~at~the~beginning~of~a~row.\\
9937 That~error~is~fatal.
9938 }

9939 \@@_msg_new:nn { hvlines,~rounded-corners~and~corners }
9940 {
9941 Incompatible~options.\\
9942 You~should~not~use~'hvlines',~'rounded-corners'~and~'corners'~at~the~same~time.\\
9943 The~output~will~not~be~reliable.
9944 }

226

9945 \@@_msg_new:nn { Body~alone }
9946 {
9947 \token_to_str:N \Body\ alone. \\
9948 You~have~used~\token_to_str:N \Body\ without~\token_to_str:N \CodeBefore.\\
9949 That~error~is~fatal.
9950 }

9951 \@@_msg_new:nn { cellcolor~in~Block }
9952 {
9953 Bad~use~of~\token_to_str:N \cellcolor \\
9954 You~can't~use~\token_to_str:N \cellcolor\ in~\token_to_str:N \Block\
9955 (except~in~a~sub-block).\\
9956 That~command~will~be~ignored.
9957 }

9958 \@@_msg_new:nn { rowcolor~in~Block }
9959 {
9960 Bad~use~of~\token_to_str:N \rowcolor \\
9961 You~can't~use~\token_to_str:N \rowcolor\ in~\token_to_str:N \Block.\\
9962 That~command~will~be~ignored.
9963 }

9964 \@@_msg_new:nn { key~color-inside }
9965 {
9966 Deleted~key.\\
9967 The~key~'color-inside'~(and~its~alias~'colortbl-like')~has~been~deleted~in
9968 ~'nicematrix'~and~must~not~be~used.\\
9969 This~error~is~fatal.
9970 }

9971 \@@_msg_new:nn { invalid~weight }
9972 {
9973 Unknown~key.\\
9974 The~key~' \l_keys_key_str '~of~your~column~X~is~unknown~and~will~be~ignored.
9975 }

9976 \@@_msg_new:nn { last~col~not~used }
9977 {
9978 Column~not~used.\\
9979 The~key~'last-col'~is~in~force~but~you~have~not~used~that~last~column~
9980 in~your~\@@_full_name_env: .~
9981 However,~you~can~go~on.
9982 }

9983 \@@_msg_new:nn { too~many~cols~for~matrix~with~last~col }
9984 {
9985 Too~many~columns.\\
9986 In~the~row~ \int_eval:n { \c@iRow },~
9987 you~try~to~use~more~columns~
9988 than~allowed~by~your~ \@@_full_name_env: .
9989 \@@_message_hdotsfor: \
9990 The~maximal~number~of~columns~is~ \int_eval:n { \l_@@_last_col_int - 1 }~
9991 (plus~the~exterior~columns).~This~error~is~fatal.
9992 }

9993 \@@_msg_new:nn { too~many~cols~for~matrix }
9994 {
9995 Too~many~columns.\\
9996 In~the~row~ \int_eval:n { \c@iRow } ,~
9997 you~try~to~use~more~columns~than~allowed~by~your~ \@@_full_name_env: .
9998 \@@_message_hdotsfor: \
9999 Recall~that~the~maximal~number~of~columns~for~a~matrix~

10000 (excepted~the~potential~exterior~columns)~is~fixed~by~the~
10001 LaTeX~counter~'MaxMatrixCols'.~
10002 Its~current~value~is~ \int_use:N \c@MaxMatrixCols \
10003 (use~ \token_to_str:N \setcounter \ to~change~that~value).~
10004 This~error~is~fatal.
10005 }

227

10006 \@@_msg_new:nn { too~many~cols~for~array }
10007 {
10008 Too~many~columns.\\
10009 In~the~row~ \int_eval:n { \c@iRow } ,~
10010 ~you~try~to~use~more~columns~than~allowed~by~your~
10011 \@@_full_name_env: . \@@_message_hdotsfor: \ The~maximal~number~of~columns~is~
10012 \int_use:N \g_@@_static_num_of_col_int \
10013 \bool_if:nT
10014 { \int_compare_p:n { \l_@@_first_col_int = 0 } || \g_@@_last_col_found_bool }
10015 { (plus~the~exterior~ones)~}
10016 since~the~preamble~is~' \g_@@_user_preamble_tl '.\\
10017 This~error~is~fatal.
10018 }

10019 \@@_msg_new:nn { columns~not~used }
10020 {
10021 Columns~not~used.\\
10022 The~preamble~of~your~ \@@_full_name_env: \ is~' \g_@@_user_preamble_tl '.~
10023 It~announces~ \int_use:N \g_@@_static_num_of_col_int \
10024 columns~but~you~only~used~ \int_use:N \c@jCol .\\
10025 The~columns~you~did~not~used~won't~be~created.\\
10026 You~won't~have~similar~warning~till~the~end~of~the~document.
10027 }

10028 \@@_msg_new:nn { empty~preamble }
10029 {
10030 Empty~preamble.\\
10031 The~preamble~of~your~ \@@_full_name_env: \ is~empty.\\
10032 This~error~is~fatal.
10033 }

10034 \@@_msg_new:nn { in~first~col }
10035 {
10036 Erroneous~use.\\
10037 You~can't~use~the~command~#1 in~the~first~column~(number~0)~of~the~array.\\
10038 That~command~will~be~ignored.
10039 }

10040 \@@_msg_new:nn { in~last~col }
10041 {
10042 Erroneous~use.\\
10043 You~can't~use~the~command~#1 in~the~last~column~(exterior)~of~the~array.\\
10044 That~command~will~be~ignored.
10045 }

10046 \@@_msg_new:nn { in~first~row }
10047 {
10048 Erroneous~use.\\
10049 You~can't~use~the~command~#1 in~the~first~row~(number~0)~of~the~array.\\
10050 That~command~will~be~ignored.
10051 }

10052 \@@_msg_new:nn { in~last~row }
10053 {
10054 Erroneous~use.\\
10055 You~can't~use~the~command~#1 in~the~last~row~(exterior)~of~the~array.\\
10056 That~command~will~be~ignored.
10057 }

10058 \@@_msg_new:nn { TopRule~without~booktabs }
10059 {
10060 Erroneous~use.\\
10061 You~can't~use~the~command~ #1 because~'booktabs'~is~not~loaded.\\
10062 That~command~will~be~ignored.
10063 }

10064 \@@_msg_new:nn { TopRule~without~tikz }
10065 {

228

10066 Erroneous~use.\\
10067 You~can't~use~the~command~ #1 because~'tikz'~is~not~loaded.\\
10068 That~command~will~be~ignored.
10069 }

10070 \@@_msg_new:nn { caption~outside~float }
10071 {
10072 Key~caption~forbidden.\\
10073 You~can't~use~the~key~'caption'~because~you~are~not~in~a~floating~
10074 environment~(such~as~\{table\}).~This~key~will~be~ignored.
10075 }

10076 \@@_msg_new:nn { short-caption~without~caption }
10077 {
10078 You~should~not~use~the~key~'short-caption'~without~'caption'.~
10079 However,~your~'short-caption'~will~be~used~as~'caption'.
10080 }

10081 \@@_msg_new:nn { double~closing~delimiter }
10082 {
10083 Double~delimiter.\\
10084 You~can't~put~a~second~closing~delimiter~"#1"~just~after~a~first~closing~
10085 delimiter.~This~delimiter~will~be~ignored.
10086 }

10087 \@@_msg_new:nn { delimiter~after~opening }
10088 {
10089 Double~delimiter.\\
10090 You~can't~put~a~second~delimiter~"#1"~just~after~a~first~opening~
10091 delimiter.~That~delimiter~will~be~ignored.
10092 }

10093 \@@_msg_new:nn { bad~option~for~line-style }
10094 {
10095 Bad~line~style.\\
10096 Since~you~haven't~loaded~Tikz,~the~only~value~you~can~give~to~'line-style'~
10097 is~'standard'.~That~key~will~be~ignored.
10098 }

10099 \@@_msg_new:nn { corners~with~no-cell-nodes }
10100 {
10101 Incompatible~keys.\\
10102 You~can't~use~the~key~'corners'~here~because~the~key~'no-cell-nodes'~
10103 is~in~force.\\
10104 If~you~go~on,~that~key~will~be~ignored.
10105 }

10106 \@@_msg_new:nn { extra-nodes~with~no-cell-nodes }
10107 {
10108 Incompatible~keys.\\
10109 You~can't~create~'extra~nodes'~here~because~the~key~'no-cell-nodes'~
10110 is~in~force.\\
10111 If~you~go~on,~those~extra~nodes~won't~be~created.
10112 }

10113 \@@_msg_new:nn { Identical~notes~in~caption }
10114 {
10115 Identical~tabular~notes.\\
10116 You~can't~put~several~notes~with~the~same~content~in~
10117 \token_to_str:N \caption \ (but~you~can~in~the~main~tabular).\\
10118 If~you~go~on,~the~output~will~probably~be~erroneous.
10119 }

10120 \@@_msg_new:nn { tabularnote~below~the~tabular }
10121 {
10122 \token_to_str:N \tabularnote \ forbidden\\
10123 You~can't~use~ \token_to_str:N \tabularnote \ in~the~caption~
10124 of~your~tabular~because~the~caption~will~be~composed~below~
10125 the~tabular.~If~you~want~the~caption~above~the~tabular~use~the~

229

10126 key~'caption-above'~in~ \token_to_str:N \NiceMatrixOptions .\\
10127 Your~ \token_to_str:N \tabularnote \ will~be~discarded~and~
10128 no~similar~error~will~raised~in~this~document.
10129 }

10130 \@@_msg_new:nn { Unknown~key~for~rules }
10131 {
10132 Unknown~key.\\
10133 There~is~only~two~keys~available~here:~width~and~color.\\
10134 Your~key~' \l_keys_key_str '~will~be~ignored.
10135 }

10136 \@@_msg_new:nn { Unknown~key~for~Hbrace }
10137 {
10138 Unknown~key.\\
10139 You~have~used~the~key~' \l_keys_key_str '~but~the~only~
10140 keys~allowed~for~the~commands~ \token_to_str:N \Hbrace \
10141 and~ \token_to_str:N \Vbrace \ are:~'brace-shift',~'color',~
10142 'horizontal-label(s)',~'shorten'~'shorten-end'~
10143 and~'shorten-start'.\\
10144 That~error~is~fatal.
10145 }

10146 \@@_msg_new:nn { Unknown~key~for~TikzEveryCell }
10147 {
10148 Unknown~key.\\
10149 There~is~only~two~keys~available~here:~
10150 'empty'~and~'not-empty'.\\
10151 Your~key~' \l_keys_key_str '~will~be~ignored.
10152 }

10153 \@@_msg_new:nn { Unknown~key~for~rotate }
10154 {
10155 Unknown~key.\\
10156 The~only~key~available~here~is~'c'.\\
10157 Your~key~' \l_keys_key_str '~will~be~ignored.
10158 }

10159 \@@_msg_new:nnn { Unknown~key~for~custom-line }
10160 {
10161 Unknown~key.\\
10162 The~key~' \l_keys_key_str '~is~unknown~in~a~'custom-line'.~
10163 It~you~go~on,~you~will~probably~have~other~errors. \\
10164 \c_@@_available_keys_str
10165 }
10166 {
10167 The~available~keys~are~(in~alphabetic~order):~
10168 ccommand,~
10169 color,~
10170 command,~
10171 dotted,~
10172 letter,~
10173 multiplicity,~
10174 sep-color,~
10175 tikz,~and~total-width.
10176 }

10177 \@@_msg_new:nnn { Unknown~key~for~xdots }
10178 {
10179 Unknown~key.\\
10180 The~key~' \l_keys_key_str '~is~unknown~for~a~command~for~drawing~dotted~rules.\\
10181 \c_@@_available_keys_str
10182 }
10183 {
10184 The~available~keys~are~(in~alphabetic~order):~
10185 'color',~
10186 'horizontal(s)-labels',~

230

10187 'inter',~
10188 'line-style',~
10189 'nullify',~
10190 'radius',~
10191 'shorten',~
10192 'shorten-end'~and~'shorten-start'.
10193 }

10194 \@@_msg_new:nn { Unknown~key~for~rowcolors }
10195 {
10196 Unknown~key.\\
10197 As~for~now,~there~is~only~two~keys~available~here:~'cols'~and~'respect-blocks'~
10198 (and~you~try~to~use~' \l_keys_key_str ')\\
10199 That~key~will~be~ignored.
10200 }

10201 \@@_msg_new:nn { label~without~caption }
10202 {
10203 You~can't~use~the~key~'label'~in~your~\{NiceTabular\}~because~
10204 you~have~not~used~the~key~'caption'.~The~key~'label'~will~be~ignored.
10205 }

10206 \@@_msg_new:nn { W~warning }
10207 {
10208 Line~ \msg_line_number: .~The~cell~is~too~wide~for~your~column~'W'~
10209 (row~ \int_use:N \c@iRow).
10210 }

10211 \@@_msg_new:nn { Construct~too~large }
10212 {
10213 Construct~too~large.\\
10214 Your~command~ \token_to_str:N #1
10215 can't~be~drawn~because~your~matrix~is~too~small.\\
10216 That~command~will~be~ignored.
10217 }

10218 \@@_msg_new:nn { underscore~after~nicematrix }
10219 {
10220 Problem~with~'underscore'.\\
10221 The~package~'underscore'~should~be~loaded~before~'nicematrix'.~
10222 You~can~go~on~but~you~won't~be~able~to~write~something~such~as:\\
10223 ' \token_to_str:N \Cdots \token_to_str:N _
10224 \{ n \token_to_str:N \text \{ ~times \} \}'.
10225 }

10226 \@@_msg_new:nn { ampersand~in~light-syntax }
10227 {
10228 Ampersand~forbidden.\\
10229 You~can't~use~an~ampersand~(\token_to_str:N &)~to~separate~columns~because~
10230 ~the~key~'light-syntax'~is~in~force.~This~error~is~fatal.
10231 }

10232 \@@_msg_new:nn { double-backslash~in~light-syntax }
10233 {
10234 Double~backslash~forbidden.\\
10235 You~can't~use~ \token_to_str:N \\
10236 ~to~separate~rows~because~the~key~'light-syntax'~
10237 is~in~force.~You~must~use~the~character~' \l_@@_end_of_row_tl '~
10238 (set~by~the~key~'end-of-row').~This~error~is~fatal.
10239 }

10240 \@@_msg_new:nn { hlines~with~color }
10241 {
10242 Incompatible~keys.\\
10243 You~can't~use~the~keys~'hlines',~'vlines'~or~'hvlines'~for~a~
10244 \token_to_str:N \Block \ when~the~key~'color'~or~'draw'~is~used.\\
10245 However,~you~can~put~several~commands~ \token_to_str:N \Block.\\
10246 Your~key~will~be~discarded.
10247 }

231

10248 \@@_msg_new:nn { bad~value~for~baseline }
10249 {
10250 Bad~value~for~baseline.\\
10251 The~value~given~to~'baseline'~(\int_use:N \l_tmpa_int)~is~not~
10252 valid.~The~value~must~be~between~\int_use:N \l_@@_first_row_int\ and~
10253 \int_use:N \g_@@_row_total_int \ or~equal~to~'t',~'c'~or~'b'~or~of~
10254 the~form~'line-i'.\\
10255 A~value~of~1~will~be~used.
10256 }

10257 \@@_msg_new:nn { bad~value~for~baseline-line }
10258 {
10259 Bad~value~for~baseline~with~line.\\
10260 The~value~given~to~'baseline'~(\int_use:N \l_tmpa_int)~is~not~
10261 valid.~The~number~of~the~line~must~be~between~1~and~
10262 \int_eval:n { \c@iRow + 1 } \\
10263 A~value~of~'line-1'~will~be~used.
10264 }

10265 \@@_msg_new:nn { detection~of~empty~cells }
10266 {
10267 Problem~with~'not-empty'\\
10268 For~technical~reasons,~you~must~activate~
10269 'create-cell-nodes'~in~ \token_to_str:N \CodeBefore \
10270 in~order~to~use~the~key~' \l_keys_key_str '.\\
10271 That~key~will~be~ignored.
10272 }

10273 \@@_msg_new:nn { siunitx~not~loaded }
10274 {
10275 siunitx~not~loaded\\
10276 You~can't~use~the~columns~'S'~because~'siunitx'~is~not~loaded.\\
10277 That~error~is~fatal.
10278 }

10279 \@@_msg_new:nn { Invalid~name }
10280 {
10281 Invalid~name.\\
10282 You~can't~give~the~name~' \l_keys_value_tl '~to~a~ \token_to_str:N
10283 \SubMatrix \ of~your~ \@@_full_name_env: .\\
10284 A~name~must~be~accepted~by~the~regular~expression~[A-Za-z][A-Za-z0-9]*.\\
10285 This~key~will~be~ignored.
10286 }

10287 \@@_msg_new:nn { Hbrace~not~allowed }
10288 {
10289 Command~not~allowed.\\
10290 You~can't~use~the~command~ \token_to_str:N #1
10291 because~you~have~not~loaded~
10292 \IfPackageLoadedTF { tikz }
10293 { the~TikZ~library~'decorations.pathreplacing'.~Use~ }
10294 { TikZ.~ Use:~ \token_to_str:N \usepackage \{tikz\}~and~ }
10295 \token_to_str:N \usetikzlibrary \{decorations.pathreplacing\}. \\
10296 That~command~will~be~ignored.
10297 }

10298 \@@_msg_new:nn { Vbrace~not~allowed }
10299 {
10300 Command~not~allowed.\\
10301 You~can't~use~the~command~ \token_to_str:N \Vbrace \
10302 because~you~have~not~loaded~TikZ~
10303 and~the~TikZ~library~'decorations.pathreplacing'.\\
10304 Use: ~\token_to_str:N \usepackage \{tikz\}~
10305 \token_to_str:N \usetikzlibrary \{decorations.pathreplacing\} \\
10306 That~command~will~be~ignored.
10307 }

10308 \@@_msg_new:nn { Wrong~line~in~SubMatrix }

232

10309 {
10310 Wrong~line.\\
10311 You~try~to~draw~a~#1~line~of~number~'#2'~in~a~
10312 \token_to_str:N \SubMatrix \ of~your~ \@@_full_name_env: \ but~that~
10313 number~is~not~valid.~It~will~be~ignored.
10314 }

10315 \@@_msg_new:nn { Impossible~delimiter }
10316 {
10317 Impossible~delimiter.\\
10318 It's~impossible~to~draw~the~#1~delimiter~of~your~
10319 \token_to_str:N \SubMatrix \ because~all~the~cells~are~empty~
10320 in~that~column.
10321 \bool_if:NT \l_@@_submatrix_slim_bool
10322 { ~Maybe~you~should~try~without~the~key~'slim'. } \\
10323 This~ \token_to_str:N \SubMatrix \ will~be~ignored.
10324 }

10325 \@@_msg_new:nnn { width~without~X~columns }
10326 {
10327 You~have~used~the~key~'width'~but~you~have~put~no~'X'~column~in~
10328 the~preamble~(' \g_@@_user_preamble_tl ')~of~your~ \@@_full_name_env: .\\
10329 That~key~will~be~ignored.
10330 }
10331 {
10332 This~message~is~the~message~'width~without~X~columns'~
10333 of~the~module~'nicematrix'.~
10334 The~experimented~users~can~disable~that~message~with~
10335 \token_to_str:N \msg_redirect_name:nnn .\\
10336 }
10337

10338 \@@_msg_new:nn { key~multiplicity~with~dotted }
10339 {
10340 Incompatible~keys. \\
10341 You~have~used~the~key~'multiplicity'~with~the~key~'dotted'~
10342 in~a~'custom-line'.~They~are~incompatible. \\
10343 The~key~'multiplicity'~will~be~discarded.
10344 }

10345 \@@_msg_new:nn { empty~environment }
10346 {
10347 Empty~environment.\\
10348 Your~ \@@_full_name_env: \ is~empty.~This~error~is~fatal.
10349 }

10350 \@@_msg_new:nn { No~letter~and~no~command }
10351 {
10352 Erroneous~use.\\
10353 Your~use~of~'custom-line'~is~no-op~since~you~don't~have~used~the~
10354 key~'letter'~(for~a~letter~for~vertical~rules)~nor~the~keys~'command'~or~
10355 ~'ccommand'~(to~draw~horizontal~rules).\\
10356 However,~you~can~go~on.
10357 }

10358 \@@_msg_new:nn { Forbidden~letter }
10359 {
10360 Forbidden~letter.\\
10361 You~can't~use~the~letter~'#1'~for~a~customized~line.~
10362 It~will~be~ignored.\\
10363 The~forbidden~letters~are:~\c_@@_forbidden_letters_str
10364 }

10365 \@@_msg_new:nn { Several~letters }
10366 {
10367 Wrong~name.\\
10368 You~must~use~only~one~letter~as~value~for~the~key~'letter'~(and~you~
10369 have~used~' \l_@@_letter_str ').\\

233

10370 It~will~be~ignored.
10371 }

10372 \@@_msg_new:nn { Delimiter~with~small }
10373 {
10374 Delimiter~forbidden.\\
10375 You~can't~put~a~delimiter~in~the~preamble~of~your~
10376 \@@_full_name_env: \
10377 because~the~key~'small'~is~in~force.\\
10378 This~error~is~fatal.
10379 }

10380 \@@_msg_new:nn { unknown~cell~for~line~in~CodeAfter }
10381 {
10382 Unknown~cell.\\
10383 Your~command~ \token_to_str:N \line \{ #1 \} \{ #2 \}~in~
10384 the~ \token_to_str:N \CodeAfter \ of~your~ \@@_full_name_env: \
10385 can't~be~executed~because~a~cell~doesn't~exist.\\
10386 This~command~ \token_to_str:N \line \ will~be~ignored.
10387 }

10388 \@@_msg_new:nnn { Duplicate~name~for~SubMatrix }
10389 {
10390 Duplicate~name.\\
10391 The~name~'#1'~is~already~used~for~a~ \token_to_str:N \SubMatrix \
10392 in~this~ \@@_full_name_env: .\\
10393 This~key~will~be~ignored.\\
10394 \bool_if:NF \g_@@_messages_for_Overleaf_bool
10395 { For~a~list~of~the~names~already~used,~type~H~<return>. }
10396 }
10397 {
10398 The~names~already~defined~in~this~ \@@_full_name_env: \ are:~
10399 \seq_use:Nnnn \g_@@_submatrix_names_seq { ~and~ } { ,~ } { ~and~ } .
10400 }

10401 \@@_msg_new:nn { r~or~l~with~preamble }
10402 {
10403 Erroneous~use.\\
10404 You~can't~use~the~key~' \l_keys_key_str '~in~your~ \@@_full_name_env: .~
10405 You~must~specify~the~alignment~of~your~columns~with~the~preamble~of~
10406 your~ \@@_full_name_env: .\\
10407 This~key~will~be~ignored.
10408 }

10409 \@@_msg_new:nn { Hdotsfor~in~col~0 }
10410 {
10411 Erroneous~use.\\
10412 You~can't~use~ \token_to_str:N \Hdotsfor\ or~\token_to_str:N \Hbrace\
10413 in~an~exterior~column~of~
10414 the~array.~This~error~is~fatal.
10415 }

10416 \@@_msg_new:nn { bad~corner }
10417 {
10418 Bad~corner.\\
10419 #1~is~an~incorrect~specification~for~a~corner~(in~the~key~
10420 'corners').~The~available~values~are:~NW,~SW,~NE~and~SE.\\
10421 This~specification~of~corner~will~be~ignored.
10422 }

10423 \@@_msg_new:nn { bad~border }
10424 {
10425 Bad~border.\\
10426 \l_keys_key_str \space ~is~an~incorrect~specification~for~a~border~
10427 (in~the~key~'borders'~of~the~command~ \token_to_str:N \Block).~
10428 The~available~values~are:~left,~right,~top~and~bottom~(and~you~can~
10429 also~use~the~key~'tikz'
10430 \IfPackageLoadedF { tikz }

234

10431 { ~if~you~load~the~LaTeX~package~'tikz' }).\\
10432 This~specification~of~border~will~be~ignored.
10433 }

10434 \@@_msg_new:nn { TikzEveryCell~without~tikz }
10435 {
10436 TikZ~not~loaded.\\
10437 You~can't~use~ \token_to_str:N \TikzEveryCell \
10438 because~you~have~not~loaded~tikz.~
10439 This~command~will~be~ignored.
10440 }

10441 \@@_msg_new:nn { tikz~key~without~tikz }
10442 {
10443 TikZ~not~loaded.\\
10444 You~can't~use~the~key~'tikz'~for~the~command~' \token_to_str:N
10445 \Block '~because~you~have~not~loaded~tikz.~
10446 This~key~will~be~ignored.
10447 }

10448 \@@_msg_new:nn { Bad~argument~for~Block }
10449 {
10450 Bad~argument.\\
10451 The~first~mandatory~argument~of~\token_to_str:N \Block\ must~
10452 be~of~the~form~'i-j'~(or~completely~empty)~and~you~have~used:~
10453 '#1'. \\
10454 If~you~go~on,~the~\token_to_str:N \Block\ will~be~mono-cell~(as~if~
10455 the~argument~was~empty).
10456 }

10457 \@@_msg_new:nn { last-col~non~empty~for~NiceArray }
10458 {
10459 Erroneous~use.\\
10460 In~the~ \@@_full_name_env: ,~you~must~use~the~key~
10461 'last-col'~without~value.\\
10462 However,~you~can~go~on~for~this~time~
10463 (the~value~' \l_keys_value_tl '~will~be~ignored).
10464 }

10465 \@@_msg_new:nn { last-col~non~empty~for~NiceMatrixOptions }
10466 {
10467 Erroneous~use. \\
10468 In~\token_to_str:N \NiceMatrixOptions ,~you~must~use~the~key~
10469 'last-col'~without~value. \\
10470 However,~you~can~go~on~for~this~time~
10471 (the~value~' \l_keys_value_tl '~will~be~ignored).
10472 }

10473 \@@_msg_new:nn { Block~too~large~1 }
10474 {
10475 Block~too~large. \\
10476 You~try~to~draw~a~block~in~the~cell~#1-#2~of~your~matrix~but~the~matrix~is~
10477 too~small~for~that~block. \\
10478 This~block~and~maybe~others~will~be~ignored.
10479 }

10480 \@@_msg_new:nn { Block~too~large~2 }
10481 {
10482 Block~too~large. \\
10483 The~preamble~of~your~ \@@_full_name_env: \ announces~ \int_use:N
10484 \g_@@_static_num_of_col_int \
10485 columns~but~you~use~only~ \int_use:N \c@jCol \ and~that's~why~a~block~
10486 specified~in~the~cell~#1-#2~can't~be~drawn.~You~should~add~some~ampersands~
10487 (&)~at~the~end~of~the~first~row~of~your~ \@@_full_name_env: . \\
10488 This~block~and~maybe~others~will~be~ignored.
10489 }

10490 \@@_msg_new:nn { unknown~column~type }

235

10491 {
10492 Bad~column~type. \\
10493 The~column~type~'#1'~in~your~ \@@_full_name_env: \
10494 is~unknown. \\
10495 This~error~is~fatal.
10496 }

10497 \@@_msg_new:nn { unknown~column~type~multicolumn }
10498 {
10499 Bad~column~type. \\
10500 The~column~type~'#1'~in~the~command~\token_to_str:N \multicolumn \
10501 ~of~your~ \@@_full_name_env: \
10502 is~unknown. \\
10503 This~error~is~fatal.
10504 }

10505 \@@_msg_new:nn { unknown~column~type~S }
10506 {
10507 Bad~column~type. \\
10508 The~column~type~'S'~in~your~ \@@_full_name_env: \ is~unknown. \\
10509 If~you~want~to~use~the~column~type~'S'~of~siunitx,~you~should~
10510 load~that~package. \\
10511 This~error~is~fatal.
10512 }

10513 \@@_msg_new:nn { unknown~column~type~S~multicolumn }
10514 {
10515 Bad~column~type. \\
10516 The~column~type~'S'~in~the~command~\token_to_str:N \multicolumn \
10517 of~your~ \@@_full_name_env: \ is~unknown. \\
10518 If~you~want~to~use~the~column~type~'S'~of~siunitx,~you~should~
10519 load~that~package. \\
10520 This~error~is~fatal.
10521 }

10522 \@@_msg_new:nn { tabularnote~forbidden }
10523 {
10524 Forbidden~command. \\
10525 You~can't~use~the~command~ \token_to_str:N \tabularnote \
10526 ~here.~This~command~is~available~only~in~
10527 \{NiceTabular\},~\{NiceTabular*\}~and~\{NiceTabularX\}~or~in~
10528 the~argument~of~a~command~\token_to_str:N \caption \ included~
10529 in~an~environment~\{table\}. \\
10530 This~command~will~be~ignored.
10531 }

10532 \@@_msg_new:nn { borders~forbidden }
10533 {
10534 Forbidden~key.\\
10535 You~can't~use~the~key~'borders'~of~the~command~ \token_to_str:N \Block \
10536 because~the~option~'rounded-corners'~
10537 is~in~force~with~a~non-zero~value.\\
10538 This~key~will~be~ignored.
10539 }

10540 \@@_msg_new:nn { bottomrule~without~booktabs }
10541 {
10542 booktabs~not~loaded.\\
10543 You~can't~use~the~key~'tabular/bottomrule'~because~you~haven't~
10544 loaded~'booktabs'.\\
10545 This~key~will~be~ignored.
10546 }

10547 \@@_msg_new:nn { enumitem~not~loaded }
10548 {
10549 enumitem~not~loaded. \\
10550 You~can't~use~the~command~ \token_to_str:N \tabularnote \
10551 ~because~you~haven't~loaded~'enumitem'. \\

236

10552 All~the~commands~ \token_to_str:N \tabularnote \ will~be~
10553 ignored~in~the~document.
10554 }

10555 \@@_msg_new:nn { tikz~without~tikz }
10556 {
10557 Tikz~not~loaded. \\
10558 You~can't~use~the~key~'tikz'~here~because~Tikz~is~not~
10559 loaded.~If~you~go~on,~that~key~will~be~ignored.
10560 }

10561 \@@_msg_new:nn { tikz~in~custom-line~without~tikz }
10562 {
10563 Tikz~not~loaded. \\
10564 You~have~used~the~key~'tikz'~in~the~definition~of~a~
10565 customized~line~(with~'custom-line')~but~tikz~is~not~loaded.~
10566 You~can~go~on~but~you~will~have~another~error~if~you~actually~
10567 use~that~custom~line.
10568 }

10569 \@@_msg_new:nn { tikz~in~borders~without~tikz }
10570 {
10571 Tikz~not~loaded. \\
10572 You~have~used~the~key~'tikz'~in~a~key~'borders'~(of~a~
10573 command~' \token_to_str:N \Block ')~but~tikz~is~not~loaded.~
10574 That~key~will~be~ignored.
10575 }

10576 \@@_msg_new:nn { color~in~custom-line~with~tikz }
10577 {
10578 Erroneous~use.\\
10579 In~a~'custom-line',~you~have~used~both~'tikz'~and~'color',~
10580 which~is~forbidden~(you~should~use~'color'~inside~the~key~'tikz').~
10581 The~key~'color'~will~be~discarded.
10582 }

10583 \@@_msg_new:nn { Wrong~last~row }
10584 {
10585 Wrong~number.\\
10586 You~have~used~'last-row= \int_use:N \l_@@_last_row_int '~but~your~
10587 \@@_full_name_env: \ seems~to~have~ \int_use:N \c@iRow \ rows.~
10588 If~you~go~on,~the~value~of~ \int_use:N \c@iRow \ will~be~used~for~
10589 last~row~but~you~should~correct~your~code.~You~can~avoid~this~
10590 problem~by~using~'last-row'~without~value~(more~compilations~
10591 might~be~necessary).
10592 }

10593 \@@_msg_new:nn { Yet~in~env }
10594 {
10595 Nested~environments.\\
10596 Environments~of~nicematrix~can't~be~nested.\\
10597 This~error~is~fatal.
10598 }

10599 \@@_msg_new:nn { Outside~math~mode }
10600 {
10601 Outside~math~mode.\\
10602 The~\@@_full_name_env: \ can~be~used~only~in~math~mode~
10603 (and~not~in~ \token_to_str:N \vcenter).\\
10604 This~error~is~fatal.
10605 }

10606 \@@_msg_new:nn { One~letter~allowed }
10607 {
10608 Bad~name.\\
10609 The~value~of~key~' \l_keys_key_str '~must~be~of~length~1~and~
10610 you~have~used~' \l_keys_value_tl '.\\
10611 It~will~be~ignored.
10612 }

237

10613 \@@_msg_new:nn { TabularNote~in~CodeAfter }
10614 {
10615 Environment~\{TabularNote\}~forbidden.\\
10616 You~must~use~\{TabularNote\}~at~the~end~of~your~\{NiceTabular\}~
10617 but~*before*~the~ \token_to_str:N \CodeAfter . \\
10618 This~environment~\{TabularNote\}~will~be~ignored.
10619 }

10620 \@@_msg_new:nn { varwidth~not~loaded }
10621 {
10622 varwidth~not~loaded.\\
10623 You~can't~use~the~column~type~'V'~because~'varwidth'~is~not~
10624 loaded.\\
10625 Your~column~will~behave~like~'p'.
10626 }

10627 \@@_msg_new:nn { varwidth~not~loaded~in~X }
10628 {
10629 varwidth~not~loaded.\\
10630 You~can't~use~the~key~'V'~in~your~column~'X'~
10631 because~'varwidth'~is~not~loaded.\\
10632 It~will~be~ignored. \\
10633 }

10634 \@@_msg_new:nnn { Unknown~key~for~RulesBis }
10635 {
10636 Unknown~key.\\
10637 Your~key~' \l_keys_key_str '~is~unknown~for~a~rule.\\
10638 \c_@@_available_keys_str
10639 }
10640 {
10641 The~available~keys~are~(in~alphabetic~order):~
10642 color,~
10643 dotted,~
10644 multiplicity,~
10645 sep-color,~
10646 tikz,~and~total-width.
10647 }
10648

10649 \@@_msg_new:nnn { Unknown~key~for~Block }
10650 {
10651 Unknown~key. \\
10652 The~key~' \l_keys_key_str '~is~unknown~for~the~command~
10653 \token_to_str:N \Block . \\
10654 It~will~be~ignored. \\
10655 \c_@@_available_keys_str
10656 }
10657 {
10658 The~available~keys~are~(in~alphabetic~order):~&-in-blocks,~ampersand-in-blocks,~
10659 b,~B,~borders,~c,~draw,~fill,~hlines,~hvlines,~l,~line-width,~name,~
10660 opacity,~rounded-corners,~r,~respect-arraystretch,~t,~T,~tikz,~transparent~
10661 and~vlines.
10662 }

10663 \@@_msg_new:nnn { Unknown~key~for~Brace }
10664 {
10665 Unknown~key.\\
10666 The~key~' \l_keys_key_str '~is~unknown~for~the~commands~
10667 \token_to_str:N \UnderBrace \ and~ \token_to_str:N \OverBrace . \\
10668 It~will~be~ignored. \\
10669 \c_@@_available_keys_str
10670 }
10671 {
10672 The~available~keys~are~(in~alphabetic~order):~color,~left-shorten,~
10673 right-shorten,~shorten~(which~fixes~both~left-shorten~and~
10674 right-shorten)~and~yshift.

238

10675 }

10676 \@@_msg_new:nnn { Unknown~key~for~CodeAfter }
10677 {
10678 Unknown~key.\\
10679 The~key~' \l_keys_key_str '~is~unknown.\\
10680 It~will~be~ignored. \\
10681 \c_@@_available_keys_str
10682 }
10683 {
10684 The~available~keys~are~(in~alphabetic~order):~
10685 delimiters/color,~
10686 rules~(with~the~subkeys~'color'~and~'width'),~
10687 sub-matrix~(several~subkeys)~
10688 and~xdots~(several~subkeys).~
10689 The~latter~is~for~the~command~ \token_to_str:N \line .
10690 }

10691 \@@_msg_new:nnn { Unknown~key~for~CodeBefore }
10692 {
10693 Unknown~key.\\
10694 The~key~' \l_keys_key_str '~is~unknown.\\
10695 It~will~be~ignored. \\
10696 \c_@@_available_keys_str
10697 }
10698 {
10699 The~available~keys~are~(in~alphabetic~order):~
10700 create-cell-nodes,~
10701 delimiters/color~and~
10702 sub-matrix~(several~subkeys).
10703 }

10704 \@@_msg_new:nnn { Unknown~key~for~SubMatrix }
10705 {
10706 Unknown~key.\\
10707 The~key~' \l_keys_key_str '~is~unknown.\\
10708 That~key~will~be~ignored. \\
10709 \c_@@_available_keys_str
10710 }
10711 {
10712 The~available~keys~are~(in~alphabetic~order):~
10713 'delimiters/color',~
10714 'extra-height',~
10715 'hlines',~
10716 'hvlines',~
10717 'left-xshift',~
10718 'name',~
10719 'right-xshift',~
10720 'rules'~(with~the~subkeys~'color'~and~'width'),~
10721 'slim',~
10722 'vlines'~and~'xshift'~(which~sets~both~'left-xshift'~
10723 and~'right-xshift').\\
10724 }

10725 \@@_msg_new:nnn { Unknown~key~for~notes }
10726 {
10727 Unknown~key.\\
10728 The~key~' \l_keys_key_str '~is~unknown.\\
10729 That~key~will~be~ignored. \\
10730 \c_@@_available_keys_str
10731 }
10732 {
10733 The~available~keys~are~(in~alphabetic~order):~
10734 bottomrule,~
10735 code-after,~
10736 code-before,~

239

10737 detect-duplicates,~
10738 enumitem-keys,~
10739 enumitem-keys-para,~
10740 para,~
10741 label-in-list,~
10742 label-in-tabular~and~
10743 style.
10744 }

10745 \@@_msg_new:nnn { Unknown~key~for~RowStyle }
10746 {
10747 Unknown~key.\\
10748 The~key~' \l_keys_key_str '~is~unknown~for~the~command~
10749 \token_to_str:N \RowStyle . \\
10750 That~key~will~be~ignored. \\
10751 \c_@@_available_keys_str
10752 }
10753 {
10754 The~available~keys~are~(in~alphabetic~order):~
10755 bold,~
10756 cell-space-top-limit,~
10757 cell-space-bottom-limit,~
10758 cell-space-limits,~
10759 color,~
10760 fill~(alias:~rowcolor),~
10761 nb-rows,~
10762 opacity~and~
10763 rounded-corners.
10764 }

10765 \@@_msg_new:nnn { Unknown~key~for~NiceMatrixOptions }
10766 {
10767 Unknown~key.\\
10768 The~key~' \l_keys_key_str '~is~unknown~for~the~command~
10769 \token_to_str:N \NiceMatrixOptions . \\
10770 That~key~will~be~ignored. \\
10771 \c_@@_available_keys_str
10772 }
10773 {
10774 The~available~keys~are~(in~alphabetic~order):~
10775 &-in-blocks,~
10776 allow-duplicate-names,~
10777 ampersand-in-blocks,~
10778 caption-above,~
10779 cell-space-bottom-limit,~
10780 cell-space-limits,~
10781 cell-space-top-limit,~
10782 code-for-first-col,~
10783 code-for-first-row,~
10784 code-for-last-col,~
10785 code-for-last-row,~
10786 corners,~
10787 custom-key,~
10788 create-extra-nodes,~
10789 create-medium-nodes,~
10790 create-large-nodes,~
10791 custom-line,~
10792 delimiters~(several~subkeys),~
10793 end-of-row,~
10794 first-col,~
10795 first-row,~
10796 hlines,~
10797 hvlines,~
10798 hvlines-except-borders,~
10799 last-col,~

240

10800 last-row,~
10801 left-margin,~
10802 light-syntax,~
10803 light-syntax-expanded,~
10804 matrix/columns-type,~
10805 no-cell-nodes,~
10806 notes~(several~subkeys),~
10807 nullify-dots,~
10808 pgf-node-code,~
10809 renew-dots,~
10810 renew-matrix,~
10811 respect-arraystretch,~
10812 rounded-corners,~
10813 right-margin,~
10814 rules~(with~the~subkeys~'color'~and~'width'),~
10815 small,~
10816 sub-matrix~(several~subkeys),~
10817 vlines,~
10818 xdots~(several~subkeys).
10819 }

For ‘{NiceArray}‘, the set of keys is the same as for {NiceMatrix} excepted that there is no l and
r.

10820 \@@_msg_new:nnn { Unknown~key~for~NiceArray }
10821 {
10822 Unknown~key.\\
10823 The~key~' \l_keys_key_str '~is~unknown~for~the~environment~
10824 \{NiceArray\}. \\
10825 That~key~will~be~ignored. \\
10826 \c_@@_available_keys_str
10827 }
10828 {
10829 The~available~keys~are~(in~alphabetic~order):~
10830 &-in-blocks,~
10831 ampersand-in-blocks,~
10832 b,~
10833 baseline,~
10834 c,~
10835 cell-space-bottom-limit,~
10836 cell-space-limits,~
10837 cell-space-top-limit,~
10838 code-after,~
10839 code-for-first-col,~
10840 code-for-first-row,~
10841 code-for-last-col,~
10842 code-for-last-row,~
10843 columns-width,~
10844 corners,~
10845 create-extra-nodes,~
10846 create-medium-nodes,~
10847 create-large-nodes,~
10848 extra-left-margin,~
10849 extra-right-margin,~
10850 first-col,~
10851 first-row,~
10852 hlines,~
10853 hvlines,~
10854 hvlines-except-borders,~
10855 last-col,~
10856 last-row,~
10857 left-margin,~
10858 light-syntax,~
10859 light-syntax-expanded,~
10860 name,~

241

10861 no-cell-nodes,~
10862 nullify-dots,~
10863 pgf-node-code,~
10864 renew-dots,~
10865 respect-arraystretch,~
10866 right-margin,~
10867 rounded-corners,~
10868 rules~(with~the~subkeys~'color'~and~'width'),~
10869 small,~
10870 t,~
10871 vlines,~
10872 xdots/color,~
10873 xdots/shorten-start,~
10874 xdots/shorten-end,~
10875 xdots/shorten~and~
10876 xdots/line-style.
10877 }

This error message is used for the set of keys nicematrix/NiceMatrix and nicematrix/pNiceArray
(but not by nicematrix/NiceArray because, for this set of keys, there is no l and r).

10878 \@@_msg_new:nnn { Unknown~key~for~NiceMatrix }
10879 {
10880 Unknown~key.\\
10881 The~key~' \l_keys_key_str '~is~unknown~for~the~
10882 \@@_full_name_env: . \\
10883 That~key~will~be~ignored. \\
10884 \c_@@_available_keys_str
10885 }
10886 {
10887 The~available~keys~are~(in~alphabetic~order):~
10888 &-in-blocks,~
10889 ampersand-in-blocks,~
10890 b,~
10891 baseline,~
10892 c,~
10893 cell-space-bottom-limit,~
10894 cell-space-limits,~
10895 cell-space-top-limit,~
10896 code-after,~
10897 code-for-first-col,~
10898 code-for-first-row,~
10899 code-for-last-col,~
10900 code-for-last-row,~
10901 columns-type,~
10902 columns-width,~
10903 corners,~
10904 create-extra-nodes,~
10905 create-medium-nodes,~
10906 create-large-nodes,~
10907 extra-left-margin,~
10908 extra-right-margin,~
10909 first-col,~
10910 first-row,~
10911 hlines,~
10912 hvlines,~
10913 hvlines-except-borders,~
10914 l,~
10915 last-col,~
10916 last-row,~
10917 left-margin,~
10918 light-syntax,~
10919 light-syntax-expanded,~
10920 name,~

242

10921 no-cell-nodes,~
10922 nullify-dots,~
10923 pgf-node-code,~
10924 r,~
10925 renew-dots,~
10926 respect-arraystretch,~
10927 right-margin,~
10928 rounded-corners,~
10929 rules~(with~the~subkeys~'color'~and~'width'),~
10930 small,~
10931 t,~
10932 vlines,~
10933 xdots/color,~
10934 xdots/shorten-start,~
10935 xdots/shorten-end,~
10936 xdots/shorten~and~
10937 xdots/line-style.
10938 }

10939 \@@_msg_new:nnn { Unknown~key~for~NiceTabular }
10940 {
10941 Unknown~key.\\
10942 The~key~' \l_keys_key_str '~is~unknown~for~the~environment~
10943 \{NiceTabular\}. \\
10944 That~key~will~be~ignored. \\
10945 \c_@@_available_keys_str
10946 }
10947 {
10948 The~available~keys~are~(in~alphabetic~order):~
10949 &-in-blocks,~
10950 ampersand-in-blocks,~
10951 b,~
10952 baseline,~
10953 c,~
10954 caption,~
10955 cell-space-bottom-limit,~
10956 cell-space-limits,~
10957 cell-space-top-limit,~
10958 code-after,~
10959 code-for-first-col,~
10960 code-for-first-row,~
10961 code-for-last-col,~
10962 code-for-last-row,~
10963 columns-width,~
10964 corners,~
10965 custom-line,~
10966 create-extra-nodes,~
10967 create-medium-nodes,~
10968 create-large-nodes,~
10969 extra-left-margin,~
10970 extra-right-margin,~
10971 first-col,~
10972 first-row,~
10973 hlines,~
10974 hvlines,~
10975 hvlines-except-borders,~
10976 label,~
10977 last-col,~
10978 last-row,~
10979 left-margin,~
10980 light-syntax,~
10981 light-syntax-expanded,~
10982 name,~
10983 no-cell-nodes,~

243

10984 notes~(several~subkeys),~
10985 nullify-dots,~
10986 pgf-node-code,~
10987 renew-dots,~
10988 respect-arraystretch,~
10989 right-margin,~
10990 rounded-corners,~
10991 rules~(with~the~subkeys~'color'~and~'width'),~
10992 short-caption,~
10993 t,~
10994 tabularnote,~
10995 vlines,~
10996 xdots/color,~
10997 xdots/shorten-start,~
10998 xdots/shorten-end,~
10999 xdots/shorten~and~
11000 xdots/line-style.
11001 }

11002 \@@_msg_new:nnn { Duplicate~name }
11003 {
11004 Duplicate~name.\\
11005 The~name~' \l_keys_value_tl '~is~already~used~and~you~shouldn't~use~
11006 the~same~environment~name~twice.~You~can~go~on,~but,~
11007 maybe,~you~will~have~incorrect~results~especially~
11008 if~you~use~'columns-width=auto'.~If~you~don't~want~to~see~this~
11009 message~again,~use~the~key~'allow-duplicate-names'~in~
11010 ' \token_to_str:N \NiceMatrixOptions '.\\
11011 \bool_if:NF \g_@@_messages_for_Overleaf_bool
11012 { For~a~list~of~the~names~already~used,~type~H~<return>. }
11013 }
11014 {
11015 The~names~already~defined~in~this~document~are:~
11016 \clist_use:Nnnn \g_@@_names_clist { ~and~ } { ,~ } { ~and~ } .
11017 }

11018 \@@_msg_new:nn { caption-above~in~env }
11019 {
11020 The~key~'caption-above'~must~be~used~in~\token_to_str:N \NiceMatrixOptions.\\
11021 That~key~will~be~ignored.
11022 }

11023 \@@_msg_new:nn { show-cell-names }
11024 {
11025 There~is~no~key~'show-cell-names'~in~nicematrix.\\
11026 You~should~use~the~command~\token_to_str:N \ShowCellNames\
11027 in~the~\token_to_str:N \CodeBefore\ or~the~\token_to_str:N
11028 \CodeAfter. \\
11029 That~key~will~be~ignored.
11030 }

11031 \@@_msg_new:nn { Option~auto~for~columns-width }
11032 {
11033 Erroneous~use.\\
11034 You~can't~give~the~value~'auto'~to~the~key~'columns-width'~here.~
11035 That~key~will~be~ignored.
11036 }

11037 \@@_msg_new:nn { NiceTabularX~without~X }
11038 {
11039 NiceTabularX~without~X.\\
11040 You~should~not~use~\{NiceTabularX\}~without~X~columns.\\
11041 However,~you~can~go~on.
11042 }

11043 \@@_msg_new:nn { Preamble~forgotten }
11044 {

244

11045 Preamble~forgotten.\\
11046 You~have~probably~forgotten~the~preamble~of~your~
11047 \@@_full_name_env: . \\
11048 This~error~is~fatal.
11049 }

11050 \@@_msg_new:nn { Invalid~col~number }
11051 {
11052 Invalid~column~number.\\
11053 A~color~instruction~in~the~ \token_to_str:N \CodeBefore \
11054 specifies~a~column~which~is~outside~the~array.~It~will~be~ignored.
11055 }

11056 \@@_msg_new:nn { Invalid~row~number }
11057 {
11058 Invalid~row~number.\\
11059 A~color~instruction~in~the~ \token_to_str:N \CodeBefore \
11060 specifies~a~row~which~is~outside~the~array.~It~will~be~ignored.
11061 }

11062 \@@_define_com:NNN p ()
11063 \@@_define_com:NNN b []
11064 \@@_define_com:NNN v | |
11065 \@@_define_com:NNN V \| \|
11066 \@@_define_com:NNN B \{ \}

245

Contents

1 Declaration of the package and packages loaded 1

2 Collecting options 3

3 Technical definitions 3

4 Parameters 9

5 The command \tabularnote 20

6 Command for creation of rectangle nodes 25

7 The options 26

8 Important code used by {NiceArrayWithDelims} 37

9 The \CodeBefore 51

10 The environment {NiceArrayWithDelims} 55

11 Construction of the preamble of the array 61

12 The redefinition of \multicolumn 77

13 The environment {NiceMatrix} and its variants 95

14 {NiceTabular}, {NiceTabularX} and {NiceTabular*} 96

15 After the construction of the array 97

16 We draw the dotted lines 104

17 The actual instructions for drawing the dotted lines with Tikz 119

18 User commands available in the new environments 125

19 The command \line accessible in code-after 131

20 The command \RowStyle 133

21 Colors of cells, rows and columns 136

22 The vertical and horizontal rules 148

23 The empty corners 165

24 The environment {NiceMatrixBlock} 167

25 The extra nodes 169

26 The blocks 173

27 How to draw the dotted lines transparently 200

28 Automatic arrays 200

29 The redefinition of the command \dotfill 202

30 The command \diagbox 202

246

31 The keyword \CodeAfter 203

32 The delimiters in the preamble 204

33 The command \SubMatrix 205

34 Les commandes \UnderBrace et \OverBrace 214

35 The commands HBrace et VBrace 217

36 The command TikzEveryCell 220

37 The command \ShowCellNames 222

38 We process the options at package loading 223

39 About the package underscore 225

40 Error messages of the package 225

247

	1 Declaration of the package and packages loaded
	2 Collecting options
	3 Technical definitions
	4 Parameters
	5 The command \tabularnote
	6 Command for creation of rectangle nodes
	7 The options
	8 Important code used by {NiceArrayWithDelims}
	9 The \CodeBefore
	10 The environment {NiceArrayWithDelims}
	11 Construction of the preamble of the array
	12 The redefinition of \multicolumn
	13 The environment {NiceMatrix} and its variants
	14 {NiceTabular}, {NiceTabularX} and {NiceTabular*}
	15 After the construction of the array
	16 We draw the dotted lines
	17 The actual instructions for drawing the dotted lines with Tikz
	18 User commands available in the new environments
	19 The command \line accessible in code-after
	20 The command \RowStyle
	21 Colors of cells, rows and columns
	22 The vertical and horizontal rules
	23 The empty corners
	24 The environment {NiceMatrixBlock}
	25 The extra nodes
	26 The blocks
	27 How to draw the dotted lines transparently
	28 Automatic arrays
	29 The redefinition of the command \dotfill
	30 The command \diagbox
	31 The keyword \CodeAfter
	32 The delimiters in the preamble
	33 The command \SubMatrix
	34 Les commandes \UnderBrace et \OverBrace
	35 The commands HBrace et VBrace
	36 The command TikzEveryCell
	37 The command \ShowCellNames
	38 We process the options at package loading
	39 About the package underscore
	40 Error messages of the package
	Contents

