/* -*- Mode: c; c-basic-offset: 4; tab-width: 8; indent-tabs-mode: t; -*- */ /* * Copyright © 2010, 2012 Soren Sandmann Pedersen * Copyright © 2010, 2012 Red Hat, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Author: Soren Sandmann Pedersen (sandmann@cs.au.dk) */ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include "pixman-private.h" /* Workaround for http://gcc.gnu.org/PR54965 */ /* GCC 4.6 has problems with force_inline, so just use normal inline instead */ #if defined(__GNUC__) && (__GNUC__ == 4) && (__GNUC_MINOR__ == 6) #undef force_inline #define force_inline __inline__ #endif typedef float (* combine_channel_t) (float sa, float s, float da, float d); static force_inline void combine_inner (pixman_bool_t component, float *dest, const float *src, const float *mask, int n_pixels, combine_channel_t combine_a, combine_channel_t combine_c) { int i; if (!mask) { for (i = 0; i < 4 * n_pixels; i += 4) { float sa = src[i + 0]; float sr = src[i + 1]; float sg = src[i + 2]; float sb = src[i + 3]; float da = dest[i + 0]; float dr = dest[i + 1]; float dg = dest[i + 2]; float db = dest[i + 3]; dest[i + 0] = combine_a (sa, sa, da, da); dest[i + 1] = combine_c (sa, sr, da, dr); dest[i + 2] = combine_c (sa, sg, da, dg); dest[i + 3] = combine_c (sa, sb, da, db); } } else { for (i = 0; i < 4 * n_pixels; i += 4) { float sa, sr, sg, sb; float ma, mr, mg, mb; float da, dr, dg, db; sa = src[i + 0]; sr = src[i + 1]; sg = src[i + 2]; sb = src[i + 3]; if (component) { ma = mask[i + 0]; mr = mask[i + 1]; mg = mask[i + 2]; mb = mask[i + 3]; sr *= mr; sg *= mg; sb *= mb; ma *= sa; mr *= sa; mg *= sa; mb *= sa; sa = ma; } else { ma = mask[i + 0]; sa *= ma; sr *= ma; sg *= ma; sb *= ma; ma = mr = mg = mb = sa; } da = dest[i + 0]; dr = dest[i + 1]; dg = dest[i + 2]; db = dest[i + 3]; dest[i + 0] = combine_a (ma, sa, da, da); dest[i + 1] = combine_c (mr, sr, da, dr); dest[i + 2] = combine_c (mg, sg, da, dg); dest[i + 3] = combine_c (mb, sb, da, db); } } } #define MAKE_COMBINER(name, component, combine_a, combine_c) \ static void \ combine_ ## name ## _float (pixman_implementation_t *imp, \ pixman_op_t op, \ float *dest, \ const float *src, \ const float *mask, \ int n_pixels) \ { \ combine_inner (component, dest, src, mask, n_pixels, \ combine_a, combine_c); \ } #define MAKE_COMBINERS(name, combine_a, combine_c) \ MAKE_COMBINER(name ## _ca, TRUE, combine_a, combine_c) \ MAKE_COMBINER(name ## _u, FALSE, combine_a, combine_c) /* * Porter/Duff operators */ typedef enum { ZERO, ONE, SRC_ALPHA, DEST_ALPHA, INV_SA, INV_DA, SA_OVER_DA, DA_OVER_SA, INV_SA_OVER_DA, INV_DA_OVER_SA, ONE_MINUS_SA_OVER_DA, ONE_MINUS_DA_OVER_SA, ONE_MINUS_INV_DA_OVER_SA, ONE_MINUS_INV_SA_OVER_DA } combine_factor_t; #define CLAMP(f) \ (((f) < 0)? 0 : (((f) > 1.0) ? 1.0 : (f))) static force_inline float get_factor (combine_factor_t factor, float sa, float da) { float f = -1; switch (factor) { case ZERO: f = 0.0f; break; case ONE: f = 1.0f; break; case SRC_ALPHA: f = sa; break; case DEST_ALPHA: f = da; break; case INV_SA: f = 1 - sa; break; case INV_DA: f = 1 - da; break; case SA_OVER_DA: if (da == 0.0f) f = 1.0f; else f = CLAMP (sa / da); break; case DA_OVER_SA: if (sa == 0.0f) f = 1.0f; else f = CLAMP (da / sa); break; case INV_SA_OVER_DA: if (da == 0.0f) f = 1.0f; else f = CLAMP ((1.0f - sa) / da); break; case INV_DA_OVER_SA: if (sa == 0.0f) f = 1.0f; else f = CLAMP ((1.0f - da) / sa); break; case ONE_MINUS_SA_OVER_DA: if (da == 0.0f) f = 0.0f; else f = CLAMP (1.0f - sa / da); break; case ONE_MINUS_DA_OVER_SA: if (sa == 0.0f) f = 0.0f; else f = CLAMP (1.0f - da / sa); break; case ONE_MINUS_INV_DA_OVER_SA: if (sa == 0.0f) f = 0.0f; else f = CLAMP (1.0f - (1.0f - da) / sa); break; case ONE_MINUS_INV_SA_OVER_DA: if (da == 0.0f) f = 0.0f; else f = CLAMP (1.0f - (1.0f - sa) / da); break; } return f; } #define MAKE_PD_COMBINERS(name, a, b) \ static float force_inline \ pd_combine_ ## name (float sa, float s, float da, float d) \ { \ const float fa = get_factor (a, sa, da); \ const float fb = get_factor (b, sa, da); \ \ return MIN (1.0f, s * fa + d * fb); \ } \ \ MAKE_COMBINERS(name, pd_combine_ ## name, pd_combine_ ## name) MAKE_PD_COMBINERS (clear, ZERO, ZERO) MAKE_PD_COMBINERS (src, ONE, ZERO) MAKE_PD_COMBINERS (dst, ZERO, ONE) MAKE_PD_COMBINERS (over, ONE, INV_SA) MAKE_PD_COMBINERS (over_reverse, INV_DA, ONE) MAKE_PD_COMBINERS (in, DEST_ALPHA, ZERO) MAKE_PD_COMBINERS (in_reverse, ZERO, SRC_ALPHA) MAKE_PD_COMBINERS (out, INV_DA, ZERO) MAKE_PD_COMBINERS (out_reverse, ZERO, INV_SA) MAKE_PD_COMBINERS (atop, DEST_ALPHA, INV_SA) MAKE_PD_COMBINERS (atop_reverse, INV_DA, SRC_ALPHA) MAKE_PD_COMBINERS (xor, INV_DA, INV_SA) MAKE_PD_COMBINERS (add, ONE, ONE) MAKE_PD_COMBINERS (saturate, INV_DA_OVER_SA, ONE) MAKE_PD_COMBINERS (disjoint_clear, ZERO, ZERO) MAKE_PD_COMBINERS (disjoint_src, ONE, ZERO) MAKE_PD_COMBINERS (disjoint_dst, ZERO, ONE) MAKE_PD_COMBINERS (disjoint_over, ONE, INV_SA_OVER_DA) MAKE_PD_COMBINERS (disjoint_over_reverse, INV_DA_OVER_SA, ONE) MAKE_PD_COMBINERS (disjoint_in, ONE_MINUS_INV_DA_OVER_SA, ZERO) MAKE_PD_COMBINERS (disjoint_in_reverse, ZERO, ONE_MINUS_INV_SA_OVER_DA) MAKE_PD_COMBINERS (disjoint_out, INV_DA_OVER_SA, ZERO) MAKE_PD_COMBINERS (disjoint_out_reverse, ZERO, INV_SA_OVER_DA) MAKE_PD_COMBINERS (disjoint_atop, ONE_MINUS_INV_DA_OVER_SA, INV_SA_OVER_DA) MAKE_PD_COMBINERS (disjoint_atop_reverse, INV_DA_OVER_SA, ONE_MINUS_INV_SA_OVER_DA) MAKE_PD_COMBINERS (disjoint_xor, INV_DA_OVER_SA, INV_SA_OVER_DA) MAKE_PD_COMBINERS (conjoint_clear, ZERO, ZERO) MAKE_PD_COMBINERS (conjoint_src, ONE, ZERO) MAKE_PD_COMBINERS (conjoint_dst, ZERO, ONE) MAKE_PD_COMBINERS (conjoint_over, ONE, ONE_MINUS_SA_OVER_DA) MAKE_PD_COMBINERS (conjoint_over_reverse, ONE_MINUS_DA_OVER_SA, ONE) MAKE_PD_COMBINERS (conjoint_in, DA_OVER_SA, ZERO) MAKE_PD_COMBINERS (conjoint_in_reverse, ZERO, SA_OVER_DA) MAKE_PD_COMBINERS (conjoint_out, ONE_MINUS_DA_OVER_SA, ZERO) MAKE_PD_COMBINERS (conjoint_out_reverse, ZERO, ONE_MINUS_SA_OVER_DA) MAKE_PD_COMBINERS (conjoint_atop, DA_OVER_SA, ONE_MINUS_SA_OVER_DA) MAKE_PD_COMBINERS (conjoint_atop_reverse, ONE_MINUS_DA_OVER_SA, SA_OVER_DA) MAKE_PD_COMBINERS (conjoint_xor, ONE_MINUS_DA_OVER_SA, ONE_MINUS_SA_OVER_DA) /* * PDF blend modes: * * The following blend modes have been taken from the PDF ISO 32000 * specification, which at this point in time is available from * http://www.adobe.com/devnet/acrobat/pdfs/PDF32000_2008.pdf * The relevant chapters are 11.3.5 and 11.3.6. * The formula for computing the final pixel color given in 11.3.6 is: * αr × Cr = (1 – αs) × αb × Cb + (1 – αb) × αs × Cs + αb × αs × B(Cb, Cs) * with B() being the blend function. * Note that OVER is a special case of this operation, using B(Cb, Cs) = Cs * * These blend modes should match the SVG filter draft specification, as * it has been designed to mirror ISO 32000. Note that at the current point * no released draft exists that shows this, as the formulas have not been * updated yet after the release of ISO 32000. * * The default implementation here uses the PDF_SEPARABLE_BLEND_MODE and * PDF_NON_SEPARABLE_BLEND_MODE macros, which take the blend function as an * argument. Note that this implementation operates on premultiplied colors, * while the PDF specification does not. Therefore the code uses the formula * ar.Cra = (1 – as) . Dca + (1 – ad) . Sca + B(Dca, ad, Sca, as) */ #define MAKE_SEPARABLE_PDF_COMBINERS(name) \ static force_inline float \ combine_ ## name ## _a (float sa, float s, float da, float d) \ { \ return da + sa - da * sa; \ } \ \ static force_inline float \ combine_ ## name ## _c (float sa, float s, float da, float d) \ { \ float f = (1 - sa) * d + (1 - da) * s; \ \ return f + blend_ ## name (sa, s, da, d); \ } \ \ MAKE_COMBINERS (name, combine_ ## name ## _a, combine_ ## name ## _c) static force_inline float blend_multiply (float sa, float s, float da, float d) { return d * s; } static force_inline float blend_screen (float sa, float s, float da, float d) { return d * sa + s * da - s * d; } static force_inline float blend_overlay (float sa, float s, float da, float d) { if (2 * d < da) return 2 * s * d; else return sa * da - 2 * (da - d) * (sa - s); } static force_inline float blend_darken (float sa, float s, float da, float d) { s = s * da; d = d * sa; if (s > d) return d; else return s; } static force_inline float blend_lighten (float sa, float s, float da, float d) { s = s * da; d = d * sa; if (s > d) return s; else return d; } static force_inline float blend_color_dodge (float sa, float s, float da, float d) { if (d == 0.0f) return 0.0f; else if (d * sa >= sa * da - s * da) return sa * da; else if (sa - s == 0.0f) return sa * da; else return sa * sa * d / (sa - s); } static force_inline float blend_color_burn (float sa, float s, float da, float d) { if (d >= da) return sa * da; else if (sa * (da - d) >= s * da) return 0.0f; else if (s == 0.0f) return 0.0f; else return sa * (da - sa * (da - d) / s); } static force_inline float blend_hard_light (float sa, float s, float da, float d) { if (2 * s < sa) return 2 * s * d; else return sa * da - 2 * (da - d) * (sa - s); } static force_inline float blend_soft_light (float sa, float s, float da, float d) { if (2 * s < sa) { if (da == 0.0f) return d * sa; else return d * sa - d * (da - d) * (sa - 2 * s) / da; } else { if (da == 0.0f) { return 0.0f; } else { if (4 * d <= da) return d * sa + (2 * s - sa) * d * ((16 * d / da - 12) * d / da + 3); else return d * sa + (sqrtf (d * da) - d) * (2 * s - sa); } } } static force_inline float blend_difference (float sa, float s, float da, float d) { float dsa = d * sa; float sda = s * da; if (sda < dsa) return dsa - sda; else return sda - dsa; } static force_inline float blend_exclusion (float sa, float s, float da, float d) { return s * da + d * sa - 2 * d * s; } MAKE_SEPARABLE_PDF_COMBINERS (multiply) MAKE_SEPARABLE_PDF_COMBINERS (screen) MAKE_SEPARABLE_PDF_COMBINERS (overlay) MAKE_SEPARABLE_PDF_COMBINERS (darken) MAKE_SEPARABLE_PDF_COMBINERS (lighten) MAKE_SEPARABLE_PDF_COMBINERS (color_dodge) MAKE_SEPARABLE_PDF_COMBINERS (color_burn) MAKE_SEPARABLE_PDF_COMBINERS (hard_light) MAKE_SEPARABLE_PDF_COMBINERS (soft_light) MAKE_SEPARABLE_PDF_COMBINERS (difference) MAKE_SEPARABLE_PDF_COMBINERS (exclusion) /* * PDF nonseperable blend modes. * * These are implemented using the following functions to operate in Hsl * space, with Cmax, Cmid, Cmin referring to the max, mid and min value * of the red, green and blue components. * * LUM (C) = 0.3 × Cred + 0.59 × Cgreen + 0.11 × Cblue * * clip_color (C): * l = LUM (C) * min = Cmin * max = Cmax * if n < 0.0 * C = l + (((C – l) × l) ⁄ (l – min)) * if x > 1.0 * C = l + (((C – l) × (1 – l)) (max – l)) * return C * * set_lum (C, l): * d = l – LUM (C) * C += d * return clip_color (C) * * SAT (C) = CH_MAX (C) - CH_MIN (C) * * set_sat (C, s): * if Cmax > Cmin * Cmid = ( ( ( Cmid – Cmin ) × s ) ⁄ ( Cmax – Cmin ) ) * Cmax = s * else * Cmid = Cmax = 0.0 * Cmin = 0.0 * return C */ /* For premultiplied colors, we need to know what happens when C is * multiplied by a real number. LUM and SAT are linear: * * LUM (r × C) = r × LUM (C) SAT (r × C) = r × SAT (C) * * If we extend clip_color with an extra argument a and change * * if x >= 1.0 * * into * * if x >= a * * then clip_color is also linear: * * r * clip_color (C, a) = clip_color (r_c, ra); * * for positive r. * * Similarly, we can extend set_lum with an extra argument that is just passed * on to clip_color: * * r × set_lum ( C, l, a) * * = r × clip_color ( C + l - LUM (C), a) * * = clip_color ( r * C + r × l - LUM (r × C), r * a) * * = set_lum ( r * C, r * l, r * a) * * Finally, set_sat: * * r * set_sat (C, s) = set_sat (x * C, r * s) * * The above holds for all non-zero x because they x'es in the fraction for * C_mid cancel out. Specifically, it holds for x = r: * * r * set_sat (C, s) = set_sat (r_c, rs) * * * * * So, for the non-separable PDF blend modes, we have (using s, d for * non-premultiplied colors, and S, D for premultiplied: * * Color: * * a_s * a_d * B(s, d) * = a_s * a_d * set_lum (S/a_s, LUM (D/a_d), 1) * = set_lum (S * a_d, a_s * LUM (D), a_s * a_d) * * * Luminosity: * * a_s * a_d * B(s, d) * = a_s * a_d * set_lum (D/a_d, LUM(S/a_s), 1) * = set_lum (a_s * D, a_d * LUM(S), a_s * a_d) * * * Saturation: * * a_s * a_d * B(s, d) * = a_s * a_d * set_lum (set_sat (D/a_d, SAT (S/a_s)), LUM (D/a_d), 1) * = set_lum (a_s * a_d * set_sat (D/a_d, SAT (S/a_s)), * a_s * LUM (D), a_s * a_d) * = set_lum (set_sat (a_s * D, a_d * SAT (S), a_s * LUM (D), a_s * a_d)) * * Hue: * * a_s * a_d * B(s, d) * = a_s * a_d * set_lum (set_sat (S/a_s, SAT (D/a_d)), LUM (D/a_d), 1) * = set_lum (set_sat (a_d * S, a_s * SAT (D)), a_s * LUM (D), a_s * a_d) * */ typedef struct { float r; float g; float b; } rgb_t; static force_inline float minf (float a, float b) { return a < b? a : b; } static force_inline float maxf (float a, float b) { return a > b? a : b; } static force_inline float channel_min (const rgb_t *c) { return minf (minf (c->r, c->g), c->b); } static force_inline float channel_max (const rgb_t *c) { return maxf (maxf (c->r, c->g), c->b); } static force_inline float get_lum (const rgb_t *c) { return c->r * 0.3f + c->g * 0.59f + c->b * 0.11f; } static force_inline float get_sat (const rgb_t *c) { return channel_max (c) - channel_min (c); } static void clip_color (rgb_t *color, float a) { float l = get_lum (color); float n = channel_min (color); float x = channel_max (color); if (n < 0.0f) { if ((l - n) < 4 * FLT_EPSILON) { color->r = 0.0f; color->g = 0.0f; color->b = 0.0f; } else { color->r = l + (((color->r - l) * l) / (l - n)); color->g = l + (((color->g - l) * l) / (l - n)); color->b = l + (((color->b - l) * l) / (l - n)); } } if (x > a) { if ((x - l) < 4 * FLT_EPSILON) { color->r = a; color->g = a; color->b = a; } else { color->r = l + (((color->r - l) * (a - l) / (x - l))); color->g = l + (((color->g - l) * (a - l) / (x - l))); color->b = l + (((color->b - l) * (a - l) / (x - l))); } } } static void set_lum (rgb_t *color, float sa, float l) { float d = l - get_lum (color); color->r = color->r + d; color->g = color->g + d; color->b = color->b + d; clip_color (color, sa); } static void set_sat (rgb_t *src, float sat) { float *max, *mid, *min; if (src->r > src->g) { if (src->r > src->b) { max = &(src->r); if (src->g > src->b) { mid = &(src->g); min = &(src->b); } else { mid = &(src->b); min = &(src->g); } } else { max = &(src->b); mid = &(src->r); min = &(src->g); } } else { if (src->r > src->b) { max = &(src->g); mid = &(src->r); min = &(src->b); } else { min = &(src->r); if (src->g > src->b) { max = &(src->g); mid = &(src->b); } else { max = &(src->b); mid = &(src->g); } } } if (*max > *min) { *mid = (((*mid - *min) * sat) / (*max - *min)); *max = sat; } else { *mid = *max = 0.0f; } *min = 0.0f; } /* * Hue: * B(Cb, Cs) = set_lum (set_sat (Cs, SAT (Cb)), LUM (Cb)) */ static force_inline void blend_hsl_hue (rgb_t *res, const rgb_t *dest, float da, const rgb_t *src, float sa) { res->r = src->r * da; res->g = src->g * da; res->b = src->b * da; set_sat (res, get_sat (dest) * sa); set_lum (res, sa * da, get_lum (dest) * sa); } /* * Saturation: * B(Cb, Cs) = set_lum (set_sat (Cb, SAT (Cs)), LUM (Cb)) */ static force_inline void blend_hsl_saturation (rgb_t *res, const rgb_t *dest, float da, const rgb_t *src, float sa) { res->r = dest->r * sa; res->g = dest->g * sa; res->b = dest->b * sa; set_sat (res, get_sat (src) * da); set_lum (res, sa * da, get_lum (dest) * sa); } /* * Color: * B(Cb, Cs) = set_lum (Cs, LUM (Cb)) */ static force_inline void blend_hsl_color (rgb_t *res, const rgb_t *dest, float da, const rgb_t *src, float sa) { res->r = src->r * da; res->g = src->g * da; res->b = src->b * da; set_lum (res, sa * da, get_lum (dest) * sa); } /* * Luminosity: * B(Cb, Cs) = set_lum (Cb, LUM (Cs)) */ static force_inline void blend_hsl_luminosity (rgb_t *res, const rgb_t *dest, float da, const rgb_t *src, float sa) { res->r = dest->r * sa; res->g = dest->g * sa; res->b = dest->b * sa; set_lum (res, sa * da, get_lum (src) * da); } #define MAKE_NON_SEPARABLE_PDF_COMBINERS(name) \ static void \ combine_ ## name ## _u_float (pixman_implementation_t *imp, \ pixman_op_t op, \ float *dest, \ const float *src, \ const float *mask, \ int n_pixels) \ { \ int i; \ \ for (i = 0; i < 4 * n_pixels; i += 4) \ { \ float sa, da; \ rgb_t sc, dc, rc; \ \ sa = src[i + 0]; \ sc.r = src[i + 1]; \ sc.g = src[i + 2]; \ sc.b = src[i + 3]; \ \ da = dest[i + 0]; \ dc.r = dest[i + 1]; \ dc.g = dest[i + 2]; \ dc.b = dest[i + 3]; \ \ if (mask) \ { \ float ma = mask[i + 0]; \ \ /* Component alpha is not supported for HSL modes */ \ sa *= ma; \ sc.r *= ma; \ sc.g *= ma; \ sc.g *= ma; \ } \ \ blend_ ## name (&rc, &dc, da, &sc, sa); \ \ dest[i + 0] = sa + da - sa * da; \ dest[i + 1] = (1 - sa) * dc.r + (1 - da) * sc.r + rc.r; \ dest[i + 2] = (1 - sa) * dc.g + (1 - da) * sc.g + rc.g; \ dest[i + 3] = (1 - sa) * dc.b + (1 - da) * sc.b + rc.b; \ } \ } MAKE_NON_SEPARABLE_PDF_COMBINERS(hsl_hue) MAKE_NON_SEPARABLE_PDF_COMBINERS(hsl_saturation) MAKE_NON_SEPARABLE_PDF_COMBINERS(hsl_color) MAKE_NON_SEPARABLE_PDF_COMBINERS(hsl_luminosity) void _pixman_setup_combiner_functions_float (pixman_implementation_t *imp) { /* Unified alpha */ imp->combine_float[PIXMAN_OP_CLEAR] = combine_clear_u_float; imp->combine_float[PIXMAN_OP_SRC] = combine_src_u_float; imp->combine_float[PIXMAN_OP_DST] = combine_dst_u_float; imp->combine_float[PIXMAN_OP_OVER] = combine_over_u_float; imp->combine_float[PIXMAN_OP_OVER_REVERSE] = combine_over_reverse_u_float; imp->combine_float[PIXMAN_OP_IN] = combine_in_u_float; imp->combine_float[PIXMAN_OP_IN_REVERSE] = combine_in_reverse_u_float; imp->combine_float[PIXMAN_OP_OUT] = combine_out_u_float; imp->combine_float[PIXMAN_OP_OUT_REVERSE] = combine_out_reverse_u_float; imp->combine_float[PIXMAN_OP_ATOP] = combine_atop_u_float; imp->combine_float[PIXMAN_OP_ATOP_REVERSE] = combine_atop_reverse_u_float; imp->combine_float[PIXMAN_OP_XOR] = combine_xor_u_float; imp->combine_float[PIXMAN_OP_ADD] = combine_add_u_float; imp->combine_float[PIXMAN_OP_SATURATE] = combine_saturate_u_float; /* Disjoint, unified */ imp->combine_float[PIXMAN_OP_DISJOINT_CLEAR] = combine_disjoint_clear_u_float; imp->combine_float[PIXMAN_OP_DISJOINT_SRC] = combine_disjoint_src_u_float; imp->combine_float[PIXMAN_OP_DISJOINT_DST] = combine_disjoint_dst_u_float; imp->combine_float[PIXMAN_OP_DISJOINT_OVER] = combine_disjoint_over_u_float; imp->combine_float[PIXMAN_OP_DISJOINT_OVER_REVERSE] = combine_disjoint_over_reverse_u_float; imp->combine_float[PIXMAN_OP_DISJOINT_IN] = combine_disjoint_in_u_float; imp->combine_float[PIXMAN_OP_DISJOINT_IN_REVERSE] = combine_disjoint_in_reverse_u_float; imp->combine_float[PIXMAN_OP_DISJOINT_OUT] = combine_disjoint_out_u_float; imp->combine_float[PIXMAN_OP_DISJOINT_OUT_REVERSE] = combine_disjoint_out_reverse_u_float; imp->combine_float[PIXMAN_OP_DISJOINT_ATOP] = combine_disjoint_atop_u_float; imp->combine_float[PIXMAN_OP_DISJOINT_ATOP_REVERSE] = combine_disjoint_atop_reverse_u_float; imp->combine_float[PIXMAN_OP_DISJOINT_XOR] = combine_disjoint_xor_u_float; /* Conjoint, unified */ imp->combine_float[PIXMAN_OP_CONJOINT_CLEAR] = combine_conjoint_clear_u_float; imp->combine_float[PIXMAN_OP_CONJOINT_SRC] = combine_conjoint_src_u_float; imp->combine_float[PIXMAN_OP_CONJOINT_DST] = combine_conjoint_dst_u_float; imp->combine_float[PIXMAN_OP_CONJOINT_OVER] = combine_conjoint_over_u_float; imp->combine_float[PIXMAN_OP_CONJOINT_OVER_REVERSE] = combine_conjoint_over_reverse_u_float; imp->combine_float[PIXMAN_OP_CONJOINT_IN] = combine_conjoint_in_u_float; imp->combine_float[PIXMAN_OP_CONJOINT_IN_REVERSE] = combine_conjoint_in_reverse_u_float; imp->combine_float[PIXMAN_OP_CONJOINT_OUT] = combine_conjoint_out_u_float; imp->combine_float[PIXMAN_OP_CONJOINT_OUT_REVERSE] = combine_conjoint_out_reverse_u_float; imp->combine_float[PIXMAN_OP_CONJOINT_ATOP] = combine_conjoint_atop_u_float; imp->combine_float[PIXMAN_OP_CONJOINT_ATOP_REVERSE] = combine_conjoint_atop_reverse_u_float; imp->combine_float[PIXMAN_OP_CONJOINT_XOR] = combine_conjoint_xor_u_float; /* PDF operators, unified */ imp->combine_float[PIXMAN_OP_MULTIPLY] = combine_multiply_u_float; imp->combine_float[PIXMAN_OP_SCREEN] = combine_screen_u_float; imp->combine_float[PIXMAN_OP_OVERLAY] = combine_overlay_u_float; imp->combine_float[PIXMAN_OP_DARKEN] = combine_darken_u_float; imp->combine_float[PIXMAN_OP_LIGHTEN] = combine_lighten_u_float; imp->combine_float[PIXMAN_OP_COLOR_DODGE] = combine_color_dodge_u_float; imp->combine_float[PIXMAN_OP_COLOR_BURN] = combine_color_burn_u_float; imp->combine_float[PIXMAN_OP_HARD_LIGHT] = combine_hard_light_u_float; imp->combine_float[PIXMAN_OP_SOFT_LIGHT] = combine_soft_light_u_float; imp->combine_float[PIXMAN_OP_DIFFERENCE] = combine_difference_u_float; imp->combine_float[PIXMAN_OP_EXCLUSION] = combine_exclusion_u_float; imp->combine_float[PIXMAN_OP_HSL_HUE] = combine_hsl_hue_u_float; imp->combine_float[PIXMAN_OP_HSL_SATURATION] = combine_hsl_saturation_u_float; imp->combine_float[PIXMAN_OP_HSL_COLOR] = combine_hsl_color_u_float; imp->combine_float[PIXMAN_OP_HSL_LUMINOSITY] = combine_hsl_luminosity_u_float; /* Component alpha combiners */ imp->combine_float_ca[PIXMAN_OP_CLEAR] = combine_clear_ca_float; imp->combine_float_ca[PIXMAN_OP_SRC] = combine_src_ca_float; imp->combine_float_ca[PIXMAN_OP_DST] = combine_dst_ca_float; imp->combine_float_ca[PIXMAN_OP_OVER] = combine_over_ca_float; imp->combine_float_ca[PIXMAN_OP_OVER_REVERSE] = combine_over_reverse_ca_float; imp->combine_float_ca[PIXMAN_OP_IN] = combine_in_ca_float; imp->combine_float_ca[PIXMAN_OP_IN_REVERSE] = combine_in_reverse_ca_float; imp->combine_float_ca[PIXMAN_OP_OUT] = combine_out_ca_float; imp->combine_float_ca[PIXMAN_OP_OUT_REVERSE] = combine_out_reverse_ca_float; imp->combine_float_ca[PIXMAN_OP_ATOP] = combine_atop_ca_float; imp->combine_float_ca[PIXMAN_OP_ATOP_REVERSE] = combine_atop_reverse_ca_float; imp->combine_float_ca[PIXMAN_OP_XOR] = combine_xor_ca_float; imp->combine_float_ca[PIXMAN_OP_ADD] = combine_add_ca_float; imp->combine_float_ca[PIXMAN_OP_SATURATE] = combine_saturate_ca_float; /* Disjoint CA */ imp->combine_float_ca[PIXMAN_OP_DISJOINT_CLEAR] = combine_disjoint_clear_ca_float; imp->combine_float_ca[PIXMAN_OP_DISJOINT_SRC] = combine_disjoint_src_ca_float; imp->combine_float_ca[PIXMAN_OP_DISJOINT_DST] = combine_disjoint_dst_ca_float; imp->combine_float_ca[PIXMAN_OP_DISJOINT_OVER] = combine_disjoint_over_ca_float; imp->combine_float_ca[PIXMAN_OP_DISJOINT_OVER_REVERSE] = combine_disjoint_over_reverse_ca_float; imp->combine_float_ca[PIXMAN_OP_DISJOINT_IN] = combine_disjoint_in_ca_float; imp->combine_float_ca[PIXMAN_OP_DISJOINT_IN_REVERSE] = combine_disjoint_in_reverse_ca_float; imp->combine_float_ca[PIXMAN_OP_DISJOINT_OUT] = combine_disjoint_out_ca_float; imp->combine_float_ca[PIXMAN_OP_DISJOINT_OUT_REVERSE] = combine_disjoint_out_reverse_ca_float; imp->combine_float_ca[PIXMAN_OP_DISJOINT_ATOP] = combine_disjoint_atop_ca_float; imp->combine_float_ca[PIXMAN_OP_DISJOINT_ATOP_REVERSE] = combine_disjoint_atop_reverse_ca_float; imp->combine_float_ca[PIXMAN_OP_DISJOINT_XOR] = combine_disjoint_xor_ca_float; /* Conjoint CA */ imp->combine_float_ca[PIXMAN_OP_CONJOINT_CLEAR] = combine_conjoint_clear_ca_float; imp->combine_float_ca[PIXMAN_OP_CONJOINT_SRC] = combine_conjoint_src_ca_float; imp->combine_float_ca[PIXMAN_OP_CONJOINT_DST] = combine_conjoint_dst_ca_float; imp->combine_float_ca[PIXMAN_OP_CONJOINT_OVER] = combine_conjoint_over_ca_float; imp->combine_float_ca[PIXMAN_OP_CONJOINT_OVER_REVERSE] = combine_conjoint_over_reverse_ca_float; imp->combine_float_ca[PIXMAN_OP_CONJOINT_IN] = combine_conjoint_in_ca_float; imp->combine_float_ca[PIXMAN_OP_CONJOINT_IN_REVERSE] = combine_conjoint_in_reverse_ca_float; imp->combine_float_ca[PIXMAN_OP_CONJOINT_OUT] = combine_conjoint_out_ca_float; imp->combine_float_ca[PIXMAN_OP_CONJOINT_OUT_REVERSE] = combine_conjoint_out_reverse_ca_float; imp->combine_float_ca[PIXMAN_OP_CONJOINT_ATOP] = combine_conjoint_atop_ca_float; imp->combine_float_ca[PIXMAN_OP_CONJOINT_ATOP_REVERSE] = combine_conjoint_atop_reverse_ca_float; imp->combine_float_ca[PIXMAN_OP_CONJOINT_XOR] = combine_conjoint_xor_ca_float; /* PDF operators CA */ imp->combine_float_ca[PIXMAN_OP_MULTIPLY] = combine_multiply_ca_float; imp->combine_float_ca[PIXMAN_OP_SCREEN] = combine_screen_ca_float; imp->combine_float_ca[PIXMAN_OP_OVERLAY] = combine_overlay_ca_float; imp->combine_float_ca[PIXMAN_OP_DARKEN] = combine_darken_ca_float; imp->combine_float_ca[PIXMAN_OP_LIGHTEN] = combine_lighten_ca_float; imp->combine_float_ca[PIXMAN_OP_COLOR_DODGE] = combine_color_dodge_ca_float; imp->combine_float_ca[PIXMAN_OP_COLOR_BURN] = combine_color_burn_ca_float; imp->combine_float_ca[PIXMAN_OP_HARD_LIGHT] = combine_hard_light_ca_float; imp->combine_float_ca[PIXMAN_OP_SOFT_LIGHT] = combine_soft_light_ca_float; imp->combine_float_ca[PIXMAN_OP_DIFFERENCE] = combine_difference_ca_float; imp->combine_float_ca[PIXMAN_OP_EXCLUSION] = combine_exclusion_ca_float; /* It is not clear that these make sense, so make them noops for now */ imp->combine_float_ca[PIXMAN_OP_HSL_HUE] = combine_dst_u_float; imp->combine_float_ca[PIXMAN_OP_HSL_SATURATION] = combine_dst_u_float; imp->combine_float_ca[PIXMAN_OP_HSL_COLOR] = combine_dst_u_float; imp->combine_float_ca[PIXMAN_OP_HSL_LUMINOSITY] = combine_dst_u_float; }